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Abstract. We present a review on the implementation of regularization methods for the
estimation of additive nonparametric regression models with instrumental variables. We
consider various versions of Tikhonov, Landweber-Fridman and Sieve (Petrov-Galerkin) reg-
ularization. We review data-driven techniques for the sequential choice of the smoothing
and the regularization parameters. Through Monte-Carlo simulations, we discuss the finite
sample properties of each regularization method for different smoothness properties of the
regression function. Finally, we present an application to the estimation of the Engel curve
for food in a sample of rural households in Pakistan, where a partially linear specification
is described that allows one to embed other exogenous covariates.
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1. Introduction

Instrumental variables are a widely used approach in econometrics and statistics to achieve
identification and carry on inference in the presence of endogenous explanatory variables.
However, in many empirical applications, it is often preferred to introduce a parametric
structure of the function of interest. The implementation of some (linear or nonlinear)
parametric models, that can be estimated using GMM, enormously simplifies the estimation
exercise. This comes at the cost of imposing restrictions on the regression function which may
not be justified by the economic theory and can lead to misleading inference and erroneous
policy conclusions.

By contrast, a fully nonparametric specification of the main model leaves the data to speak
for themselves and, therefore, does not impose any a priori structure on the functional form.
A fully nonparametric approach can be a very useful exploratory tool for applied researchers
in order to choose an appropriate parametric form and to test restrictions coming from the
economic theory (e.g. convexity, monotonicity).

E-mail address: samuele.centorrino@stonybrook.edu (corresponding author).
Date: This version: October 19, 2015; First version: July 15, 2013.
This paper has been previously circulated under the title “Implementation, Simulations and Bootstrap in
Nonparametric Instrumental Variable Estimation”. Authors are deeply indebted to four anonymous referees
for their useful comments and to point out some mistakes in the previous version of the manuscript.

1



2 CENTORRINO, FÈVE, FLORENS

However, while the nonparametric estimation of additive models with endogenous regres-
sors using instrumental variables (also known as nonparametric instrumental regression) has
recently received enormous attention in the theoretical literature (see, e.g. Darolles, Fan,
Florens and Renault, 2011, Horowitz, 2011, and references therein), it remains quite unpop-
ular among applied researchers.1 This may be partially due to the theoretical difficulties that
empirical researchers might encounter in approaching this topic. The regression function in
nonparametric instrumental regressions is, in fact, obtained as the solution of an ill-posed in-
verse problem. Heuristically, this implies that the function to be estimated is obtained from
a singular system of equations and, therefore, the mapping that defines it is not continuous.
Hence, beside the conventional selection of the smoothing parameter for the nonparametric
regression, the estimation of this type of models requires to transform this ill-posed inverse
problem into a well-posed one. This transformation is achieved with the use of regularization
methods that require the selection of a regularization constant.

Tuning of the latter parameter constitutes an additional layer of complication, and it
has to be tackled with the appropriate methods. Data-driven techniques for the choice
of regularization parameter in the framework of nonparametric instrumental regressions are
presented in: Breunig and Johannes (2015), Centorrino (2015), Chen and Christensen (2015),
Fève and Florens (2010), Florens and Racine (2012), Horowitz (2014a) and Liu and Tao
(2014).2 These works, however, focus on a specific regularization scheme and there is not, to
the best of our knowledge, a paper which gives empirical researchers a broad picture about
regularization frameworks that can be used in the context of nonparametric instrumental
regressions.

Our intention is to give a unified and simple presentation of the several regularization
procedures that can be considered when applied researchers would like to keep the flexibility
of nonparametric estimation in the presence of endogenous regressors. Our aim is to narrow
the gap between the theoretical literature on the topic, which has been growing extremely
fast recently, with the empirical use of this framework.

We consider a simple framework with a scalar endogenous covariate, a scalar instrument
and without additional exogenous regressors. We analyze the performances of several ver-
sions of Tikhonov (Darolles, Fan, Florens and Renault, 2011), Landweber-Fridman (Florens
and Racine, 2012, Johannes, Bellegem and Vanhems, 2013) and Petrov-Galerkin (also known
as sieve, see Cardot and Johannes, 2010, Chen and Pouzo, 2012, Horowitz, 2011, Johannes
and Schwarz, 2011) regularizations in the case where both the smoothing and the regulariza-
tion parameters are chosen using data-driven methods. We also discuss viable solutions for
including additional exogenous covariates in the model and some of the relevant empirical
challenges ahead.

The paper is structured as follows. In section (2), we present the main framework. We
review carefully each regularization scheme and we discuss its practical implementation in
section (3). In section (4), we describe the structure of the Monte-Carlo experiment. In

1The few notables exceptions we are aware of are Blundell, Chen and Kristensen (2007), Hoderlein and
Holzmann (2011) and Sokullu (2015)
2There exists also a very large literature in mathematics about numerical criteria for the choice of the
regularization parameter for integral equations of the first kind (Engl et al., 2000, Vogel, 2002).
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section (5), we present an application to the estimation of the Engel curve for food using a
cross section database of Pakistani households. Finally, section (6) concludes.

2. The main framework

We focus our general presentation on the simplest framework characterized by a triplet of
random variables (Y,X,W ) ∈ R3, satisfying the following model:

Y = ϕ(X) + U(1a)

E(U |W ) = 0(1b)

This model is a regression type model, where the usual mean independence condition
E(U |X) = 0 is replaced by condition (1b). This specification has been extensively studied
in econometrics in order to account for the possible endogeneity of X, i.e. the lack of mean-
independence between the covariate X and the error term U . In particular, recent literature
has investigated the nonparametric estimation of the function ϕ(·) in (1a) (see,e.g. Newey
and Powell, 2003, Hall and Horowitz, 2005, Carrasco et al., 2007, Darolles et al., 2011, Chen
and Pouzo, 2012, among others). As a solution to the endogeneity problem, this literature
considers the role of one additional set of variables, W , which are exogenous with respect to
U and they, therefore, satisfy condition (1b).

By taking the conditional expectation with respect to W in equation (1a), we obtain the
following equality:

(2) E(ϕ(X)|W ) = E(Y |W ).

Suppose now we observe an iid realization of size N of the triplet (Y,X,W ) that satisfies
our nonparametric regression model. The conditional expectation of Y given W can be easily
estimated using the available data, as the regression of Y on W . Define:

r = E(Y |W ).

However, the unknown parameter ϕ enters equation (2) inside the conditional expectation
operator. Therefore, ϕ is defined only implicitly by equation (2) and, in its current form,
this equation cannot be used to compute an estimator as a direct function of the data.

To understand the approach undertaken for nonparametric regression, it is useful to start
from the simplest parametric specification. Consider that ϕ(X) = Xβ and define:

Y =Xβ + U(3)

X =Wγ + V,(4)

where both X and W can be thought to include a constant term, and we impose E(U |W )
and E(V |W ) equal to 0.3 In this example, we restrict our attention to linear functions of
X and W and we are interested in the estimation of the parameter β. When we take the
conditional expectation with respect to W in the first equation, we obtain the following
restriction:

E(X|W )β = r.

3The assumption of zero correlation would suffice in the linear parametric model. However, we keep the
assumption of zero conditional expectation to maintain the comparison with the nonparametric specification.
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Denote as PX = X (X ′X)−1X ′ and PW = W (W ′W )−1W ′, the orthogonal projectors onto
the linear space of the X and the W respectively. Given the restrictions we have put on the
data generating process, the conditional expectation is a projection on the space of linear
functions. Thus, we have that:

PWXβ = r,

with r = PWY , removes the error component from the model. By projecting the last equation
onto the space of X, we obtain:

(5) PXPWXβ = PXr,

which can be easily seen to be satisfied for

β = (X ′PWX)
−1
X ′r.

This is nothing but the Two-Stage Least Square (TSLS) procedure to obtain an estimator of
the parameter β. However, the linear specification imposes several linear restrictions, both
on the shape of ϕ and on the specification of the model for the endogenous variable X.
These restrictions may or may not be justified by economic theory. Therefore, a parametric
specification might not be appropriate for some empirical applications. More generally,
researchers may want to maintain some flexibility about the specification of the model and
of the function ϕ.

As in related papers (Newey, 2013), we can extend the simple intuition about the linear
model to our nonparametric estimator. The important difference is that our parameter of
interest is now infinite dimensional (it is a function), so that we need to replace PX and
PW with projectors onto an appropriately defined space of functions. Moreover, while a full
rank condition on X ′PWX is sufficient to ensure that the solution of (5) is well defined, in
the nonparametric setting the inversion of a large dimensional matrix can create important
numerical problems that need to be addressed with appropriate tools.

To restrict our nonparametric problem, we consider ϕ to belong to the space of square-
integrable functions of X, that we denote as L2

X . The conditional expectation thus projects
onto the space of square integrable functions. We define the projections onto this space as
follows:

T : L
2
X → L

2
W

T ∗ : L
2
W → L

2
X

with T projecting functions of X onto the space of functions of W and T ∗ doing the opposite
operation, i.e. projecting functions of W onto the space of functions of X.4

We now follow the same procedure as above, by applying the projection twice, first onto
the space of functions of W , to remove the error component and then onto the space of
functions of X. We obtain:

(6) T ∗Tϕ = T ∗r.

This last equation and equation (5) appear very similar at first glance. Therefore, one may
be tempted to interpret T ∗T as a very large dimensional matrix and just write the solution

4We define the two operators more formally below.
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of the system of equations as:

ϕ = (T ∗T )−1 T ∗r.

While this solution can be assumed to exist and to be well defined in the population, it is
generally not well-defined in the sample. This is mainly due to the fact that the smallest
eigenvalues of T ∗T are getting arbitrarily close to zero so that, in practice, the direct inversion
leads to an explosive, non-continuous solution. Moreover, the fact that r is not observed and
should be estimated introduces a further error which is magnified as the eigenvalues of T ∗T
get arbitrarily close to 0. In this sense, ϕ is not a continuous function of the data and the
problem in equation (6) is labelled to be an ill-posed inverse problem (see the manuscript of
Engl, Hanke and Neubauer, 2000, for a technical introduction).

The classical way to circumvent ill-posedness is to regularize T ∗T . Regularization, in this
context, boils down to the choice of a constant parameter, which transforms the ill-posed into
a well-posed inverse problem. The choice of this tuning constant becomes thus a necessary
ingredient for estimating nonparametrically the shape of the function ϕ in regression models
with endogeneity.

Figure (1) illustrates this issue. The true known function is plotted in the left panel of
the figure. The center panel shows the solution obtained by direct inversion of the integral
operator. This solution is clearly explosive because the inverse mapping is not continuous.
Finally, the right panel shows the regularized solution for several choices of the regulariza-
tion parameter. Call our regularization parameter α. A large value of α oversmooths the
inverse mapping. The function obtained is the flat green line in Figure (1), which is totally
uninformative about the shape of the true regression function. A value of α that is too small,
corresponds instead to undersmoothing. The oscillating red line obtained using a small value
of α does not give any specific guidance about the shape of the true function. By contrast,
with the right choice of α (blue line), we are able to retrieve a good numerical approximation
of the true function.
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Figure 1. The true function (A) and its numerical approximation by direct
inversion of the operator (B) and using several values of the regularization
parameter (C).

Therefore, the problem in (6) should be tackled using an appropriate regularization pro-
cedure. The heuristic idea is to replace the operator T ∗T by a continuous transformation of
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it, so that the solution does not blow up. One could add to every eigenvalue a small con-
stant term. This constant term controls the rate of decay of the eigenvalue to 0 (Tikhonov
regularization). Another approach would be to replace the infinite dimensional matrix T ∗T
by a finite approximation of it and estimate the Fourier coefficients by projection on an ar-
bitrary basis function of the instruments and the endogenous variable (sieve regularization).
Finally, it is possible to avoid the inversion of the operator T ∗T , by using an iterative method
(Landweber-Fridman regularization). Note that all these methods require the tuning of a
regularization parameter : the constant which controls the decay of the eigenvalues; the fi-
nite term at which the sum has to be truncated; and the number of iterations to reach a
reasonable approximation of the operator’s inverse.

One of the aims of this work is to gather and discuss data-driven choices of such parameters.
We conclude this initial presentation with more formal definitions of the objects used

above. Uninterested readers can skip the remainder of this section.

2.1. Theoretical underpinnings. We assume that the triplet (Y,X,W ) is characterized
by its joint cumulative distribution function F , dominated by the Lebesgue measure. Denote
as f its probability density function. We consider the space of square integrable function
relative to the true F and we denote, for instance, by L2

X , the space of square integrable
functions of X only. We further assume that E [Y 2|W = w] <∞ and r ∈ L2

W . The operator
T is a conditional expectation operator and it defines the following linear mapping:

T : L
2
X → L

2
W

(Tϕ)(w) =

∫
ϕ(x)f(x|w)dx

In order to solve (2), we also require the adjoint of the operator T , T ∗, which is defined as
follows:

〈Tϕ, ψ〉 = 〈ϕ, T ∗ψ〉 where ϕ ∈ L2
X and ψ ∈ L2

W ,

and

(T ∗ψ) (x) =

∫
ψ(w)f(w|x)dw

where 〈·, ·〉 denotes the inner product in L2
X or in L2

W and ψ is a function in L2
W .

The operators T and T ∗ are taken to be compact (see, e.g. Carrasco et al., 2007, Darolles
et al., 2011) and they, therefore, admit a singular value decomposition. That is, there is a
nonincreasing sequence of nonnegative numbers {λi, i ≥ 0}, such that:

(i) Tφi = λiψi
(ii) T ∗ψi = λiφi

For every orthonormal sequence ψi ∈ L2
W and φi ∈ L2

X . Using the singular value decompo-
sition of T , we can rewrite equation (2) as:

∞∑
j=1

λjϕjψj =
∞∑
j=1

rjψj

where ϕj = 〈ϕ, φj〉 and rj = 〈r, ψj〉 are the Fourier coefficients of ϕ and r, respectively. We
point out that compactness is not a simplifying assumption in this context but describes
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a realistic framework in which the eigenvalues of the operator are declining to zero. The
assumption that the eigenvalues of the operator are bounded below by a strictly positive value
is relevant for other econometric models, but it is never satisfied in the case of continuous
nonparametric instrumental variable estimation.

Finally, a crucial assumption for identification is that the operator is T is injective, that
is:

(8) Tϕ
a.s.
= 0 ⇒ ϕ

a.s.
= 0

(see Newey and Powell, 2003, Darolles et al., 2011, Andrews, 2011, D’Haultfoeuille, 2011).
This completeness condition is assumed to hold throughout the paper. Canay, Santos and
Shaikh (2013) have shown that it is not possible to construct a test for this assumption that
uniformly controls size. However, a recent paper by Freyberger (2015) has proposed a testing
procedure that links the outcome of such a test with the consistency of the nonparametric
estimator. Another recent body of work has provided some genericity results (Chen, Cher-
nozhukov, Lee and Newey, 2014), or sufficient conditions on the conditional distribution of
X given W , such that completeness holds (Hu and Shiu, 2015). Moreover, Santos (2012)
studies a testing procedure under partial identification, that is, when the completeness con-
dition in (8) may fail. However, its implementation goes beyond the scope of the present
paper.

Finally, under this set of assumptions, we can use Picard’s theorem (see, e.g. Kress, 1999,
p. 279) and write the solution to our inverse problem as:

(9) ϕ =
∞∑
j=1

rj
λj
φj

The ill-posedness in (2) arises because of two main issues:

(i) The inverse operator T−1 is a non-continuous operator. The noncontinuity of T−1

is tantamount to the fact that the eigenvalues λj → 0, as j → ∞. This leads to a
nonconsistent estimation of the function ϕ.

(ii) The right-hand side of the equation needs to be estimated. This approximation
introduces a further error which renders the ill-posedness of the problem even more
severe.

3. Implementation of the Nonparametric IV Estimator

Consider again the model in (1a):

Y = ϕ(X) + U, with E (U |W ) = 0.

Our parameter of interest is the function ϕ, which, by taking the conditional expectation
with respect to the instrument W , is implicitly defined by the following moment condition:

E (ϕ(X)|W = w) = r(w),

where r(w) = E (Y |W = w).
To maintain the comparison with the linear model, we rewrite our moment condition in

terms of the conditional expectation operator T , that is:

Tϕ = r.



8 CENTORRINO, FÈVE, FLORENS

By iterating the projection onto the space of the endogenous variable X, we finally obtain:

(10) T ∗Tϕ = T ∗r.

We are given an iid sample from the triplet (Y, Z,W ), denoted {(yi, zi, wi) , i = 1, . . . , N}.
From this sample, we aim to obtain an estimator of three objects: r, T and T ∗. For each one
of these objects, we wish to select a smoothing parameter. That is, either the bandwidth
parameter, in case of local polynomial regression, or, the number of approximating bases, in
the case of series methods.

However, notice that ϕ is unknown in equation (10) so that we end up selecting two
smoothing parameters. One smoothing parameter is needed from the nonparametric regres-
sion of Y on W . This is also used to obtain an estimator of the conditional expectation
operator T . Finally, we need to select a smoothing parameter for the estimation of T ∗, the
conditional expectation operator with respect to the endogenous variable X. We denote
these estimators r̂, T̂ and T̂ ∗.

We can, therefore, write the sample counterpart of equation (10) as:

(11) T̂ ∗T̂ ϕ̂ = T̂ ∗r̂.

This equation defines our estimator of ϕ as a solution of a large system of equations. We
can interpret this system to be almost singular in finite samples. It will be at this point
that the regularization procedure plays a role in transforming this problem into a well-posed
one. Regularization, as nonparametric smoothing, consists of the selection of a constant
parameter which is meant to remove the singularity in the system of equations.

To summarize, we have four objects to estimate in this model:

(i) The triplet (r, T, T ∗) can be estimated using any nonparametric regression technique.
These objects require the choice of smoothing parameters.

(ii) The function ϕ, which is found from the solution of an ill-posed inverse problem and,
therefore, requires the selection of a regularization parameter.

Despite the fact that a correspondence between the smoothing and the regularization
parameters clearly exists (Chen and Pouzo, 2012), their simultaneous choice is, to the best of
our knowledge, not feasible.5 The most judicious approach seems to select them sequentially.
As a matter of fact, it appears that the regularization parameter adjusts to the choice of the
smoothing parameter in a reasonable set of values.6

It is essential for practitioners to be able to access data-driven techniques for the selection
of both types of parameters. As a matter of fact, these provide an objective decision rule for
the selection of the tuning constants, given the sample. There is already a extensive body
of literature about the selection of smoothing parameters for nonparametric regressions (for
a review, see Härdle, 1990, Li and Racine, 2007). Hence, here we mainly focus our attention
on the methods for the data-driven selection of the regularization parameter, after we have
fixed the smoothing parameters using our preferred data-driven approach (e.g., least-squares
cross-validation and AIC, just to name a few).

5The very recent paper by Liu and Tao (2014) has tackled the joint choice of the smoothing and the
regularization parameter simultaneously in the case of sieve regularization.
6For a discussion on this topic, see also Fève and Florens (2010).
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Given the smoothing parameter, an inadequate choice of the regularization parameter has
a substantial impact on the final estimation as shown before: if we regularize too much,
the estimated curve becomes flat as we kill the information coming from the data; if we
do not regularize enough, the estimator oscillates around the true solution, but it does not
ultimately give any guidance about the form of the regression function.

Another important choice is related to the regularization procedure the researcher wants
to implement. This is essential to properly characterize the dependence of our estimator of
the regression function ϕ on the nonparametric estimates of r, T and T ∗.

The remainder of this section is divided into two parts. In the first part, we discuss the
estimation of r, T and T ∗ by local linear kernel regressions and Legendre polynomials. In the
second part, we review the regularization procedures we undertake in this paper and present,
for each of them, one criterion for the data-driven choice of the regularization parameter.

3.1. Estimation of r, T and T ∗.

3.1.1. Local Linear Regressions. Seminal papers about the estimation of nonparametric in-
strumental regressions (Hall and Horowitz, 2005, Darolles et al., 2011) generally present
their results when generalized kernels are used for estimation (Müller, 1991). These are the-
oretically useful to deal with the some of the issues related to local constant nonparametric
regressions (e.g., boundary bias), but they are not generally implemented, to the best of our
knowledge, in standard software.

Local polynomials are more popular in practice to deal with some of the shortcomings
of local constant estimation. This is why we present the estimation of r, T and T ∗ using
local polynomials. To simplify our exposition and without loss of generality, we consider
polynomials of order 1. That is, local linear fitting.

We take the kernel function K(·) to be positive, symmetric and bounded over the support
of the data and satisfying

∫
K(t)dt = 1. Further define Kh(t) = h−1K(t/h). The amount of

local smoothness of our estimator is tuned by selecting the bandwidth parameter h.
Recall that r is defined as the conditional expectation of the dependent variable Y , given

the instrument W . Therefore, for each wl, l = 1, . . . , N , we can fit the following linear model:

yi = a+ b(wi − wl) + vi, with i = 1, . . . , N,

so that r̂(wl) = â and b̂ can be used to estimate the first derivative of r. The local linear fit
for r can be therefore written as

min
a,b

N∑
i=1

(yi − a− b(wi − wl))2Khw (wi − wl) ,

with bandwidth h = hw.
Define y to be the N ×1 vector of observations of the dependent variable; K̄W , the N ×N

diagonal matrix of kernel weights {Khw (w1 − wl) , . . . , Khw (wN − wl)} and W to be the
N × 2 matrix with i-th row equal to (1, wi − wl). We have that:

r̂(wl) = e′1
(
W′K̄WW

)−1 (
W′K̄Wy

)
= Mwly,

with e′1 = (1, 0) and Mwl a 1×N vector.
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We now turn to the estimation of T and T ∗. Recall that both operators are defined to
be compact. Hence, they can both be approximated by a finite dimensional linear smoother
(Carrasco et al., 2007).

To approximate T using local linear regressions, we stack in a matrix of dimension N×N ,
the linear smoothers Mwl , for all l = 1, . . . , N , so that:

T̂ =
[
M ′

w1
, . . . ,M ′

wN

]′
.

In the same way, we can obtain an estimator of the conditional expectation of r given X,
by fitting the following regression:

min
a,b

N∑
i=1

(r̂(wi)− a− b(xi − xl))2Khx (xi − xl) ,

with bandwidth h = hx. Define K̄X to be the N × N diagonal matrix of kernel weights
{Khx (x1 − xl) , . . . , Khx (xN − xl)} and X to be the N × 2 matrix with i-th row equal to
(1, xi − xl). Thus:

Mxj = e′1
(
X′K̄XX

)−1
X′K̄X ,

and an estimator of T ∗ is obtained by stacking the linear smoothers from this last regression
as before:

T̂ ∗ =
[
M ′

x1
, . . . ,M ′

xN

]′
.

The bandwidths hw and hx can be chosen using leave-one-out cross-validation (Li and Racine,
2004, 2007).

Notice that the use of least squares cross-validation in this context is only of practical
relevance and it can be replaced by other methods. Possible alternatives include rule of thumb
smoothing, maximum likelihood cross-validation, or a modified AIC criterion (Hurvich et al.,
1998). Notice, that all these methods are known to balance the trade-off between variance
and bias for nonparametric regressions. In practice, this also seems appropriate in the case
of nonparametric instrumental regressions (see Fève and Florens, 2014, Centorrino, 2015, for
a further discussion on the topic).

3.1.2. Series (linear sieves). Another simple way of estimating r, T and T ∗ is to use series
regressions (Newey, 1997, Chen, 2007) rather than kernel smoothers. The underlying as-
sumption is that functions in L2

Z and L2
W can be well approximated by a finite sum of basis

functions which span those spaces. These basis functions can be chosen according to the
joint distribution of X and W (Hoderlein and Holzmann, 2011). However, more frequently
their choice remains arbitrary.

In this paper, we use Legendre polynomials, although other basis functions could equiva-
lently be used (e.g., B-splines, wavelets, or Hermite polynomials, just to name a few).

Denote as pJN (·), the JN×1 vector of Legendre polynomials of order JN , with 0 < JN <∞.
We can estimate r by a simple projection of the dependent variable Y on the polynomial

basis of the instrument W . That is, we fit the following linear regression model

yi = pJN (wi)
′β + vi, for i = 1, . . . , N,
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where β is a JN × 1 vector of regression coefficients. This model can be estimated using
ordinary least squares. Therefore:

r̂(wi) = pJN (wi)
′β̂,

with β̂ = (W ′NWN)−W ′Ny, where WN = [pJN (w1), . . . , pJN (wN)]′ is a N × JN matrix of
regressors and (W ′NWN)− denotes the generalized inverse of W ′NWN .

As done before, since the operators T and T ∗ are conditional expectations, they can be
estimated using linear smoothers. Thus, we approximate T as follows:

T̂ =WN(W ′NWN)−W ′N .
In order to approximate T ∗, we fit the regression of r̂ on the polynomial basis of the endoge-
nous variable X, so that:

T̂ ∗ = XN(X ′NXN)−X ′N ,
where XN = [pJN (x1), . . . , pJN (xN)]′.

In order to implement the series estimator, the order of the polynomial JN is our smoothing
parameter and ought to be chosen appropriately.

It is also worth mentioning that, in case of the estimation of the operator using linear
sieves, once the basis function pJN (·) has been fixed, we are basically solving a two-stage
least squares problem, where the dimension of the parameter to be estimated is JN (see
Horowitz, 2011). Therefore, if the smallest eigenvalue of

X ′N T̂XN
is bounded away from 0, we do not need to apply any further regularization in order to
obtain our estimator of ϕ. In this sense, the dimension of the basis function JN acts both as
a smoothing parameter, in that it allows us to obtain an estimator of r; and as a regularization
parameter, in that it permits the direct inversion of the low dimensional matrix X ′N T̂XN .
Chen and Christensen (2015) and Liu and Tao (2014) have, therefore, explored ways to select
two distinct values for JN , one that is used for smoothing the nonparametric estimator of r
and another to regularize the estimation of ϕ.

3.2. Estimation of ϕ: Regularization procedures. In this paper we present three regu-
larization procedures: Tikhonov, Landweber-Fridman and Petrov-Galerkin (more commonly
known as sieve regularization).

3.2.1. Tikhonov Regularization. The Tikhonov regularization method (TK henceforth, see
Hall and Horowitz, 2005, Darolles et al., 2011) is based on the idea that adding a small but

positive constant term to the eigenvalues of T̂ ∗T̂ would allow us to invert this matrix and
obtain a well-defined solution from equation (11).

This leads us to consider our estimator of ϕ as the solution of the following system of
normal equations:

(12) αϕ+ T̂ ∗T̂ϕ = T̂ ∗r̂.

It can be immediately seen that this condition implies:

(13) ϕ̂α =
(
αI + T̂ ∗T̂

)−1
T̂ ∗r,
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where the superscript α stresses the dependence of the solution on the regularization param-
eter.
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Figure 2. Criterion function for the optimal choice of α in Tikhonov regularization

In order to choose the regularization parameter α, we adopt the cross-validation approach
developed in Centorrino (2015). This method consists of minimizing the following sum of
squares:

CVN(α) =
N∑
i=1

[(
T̂ ϕ̂α(−i)

)
(wi)− r̂(wi)

]2
,

where
(
T̂ ϕ̂α(−i)

)
(wi) is the estimator of Tϕ obtained by removing the observation (wi, xi)

from the sample.
Centorrino (2015) has proven that this criterion is order optimal in mean squared error

and has shown its superior finite sample performances compared to other existing numerical
methods for Tikhonov regularization. A typical shape of this criterion function can be found
in figure (2).

The exact theoretical result for the case when the joint dimension of the instrument and
the endogenous variable is equal to 2 is given in the following theorem:

Theorem 3.1. The CV criterion is bounded in probability by:(
αN + 1

αN

)2 [
1

αN

(
1

N
+ h2ρ

)
+ α

min(2u+1,2)
N +

(
1

Nh2
+ h2ρ

)]
,

where u is the degree of smoothness of the function ϕ and ρ is the order of the linear smoother.
When the bandwidth parameter, hN , is chosen in such a way that

hN = OP

(
N−κ

)
, with 0 < κ ≤ 1,
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then the minimization of the CV function leads to a choice of the regularization parameter
αN , such that:

αCVN ≈ N−
κ

(min(2u,1)+2) .

3.2.2. Landweber-Fridman Regularization. The Landweber-Fridman (LF henceforth) regu-

larization consists of avoiding the inversion of the matrix T̂ ∗T̂ by using an iterative approx-
imation procedure (Johannes et al., 2013).

Consider a constant c, such that c‖T ∗T‖ < 1. If we multiply both sides of equation (11)
by c, we obtain:

(14) cT̂ ∗T̂ϕ = cT̂ ∗r̂.

The constant c is not a tuning parameter and its choice is not essential for estimation. Its
only role is to ensure the convergence of the iterative method. Since the largest eigenvalue of
T ∗T is equal to 1, any choice of c that is strictly smaller than 1 would guarantee convergence.
Of course, within the values of c that satisfy this restriction, the higher the value of c, the
faster the iterative scheme would converge.

The Landweber-Fridman approach iterates equation (14) over ϕ, in order to find a fixed
point of the system of equations.

By adding and subtracting ϕ on the left-hand side of (14), we obtain the recursive solution:

(15) ϕ̂l+1 = ϕ̂l + cT̂ ∗
(
r̂ − T̂ ϕ̂l

)
, ∀l = 0, 1, . . .

or equivalently:

(16) ϕ̂1/α = c

1/α−1∑
l=0

(
I − cT̂ ∗T̂

)l
T̂ ∗r̂,

where 1/α is the total number of iterations needed to reach the solution and plays the
role of regularization parameter. As 1/α diverges to infinity, our approximation becomes
increasingly precise.

In order to implement the LF regularization, we, therefore, need to choose the number
of iterations. Notice that, as shown in Centorrino (2015), a leave-one-out cross-validation
criterion could be also used to select α for LF regularization, directly from equation (16),
for given estimators of r, T and T ∗.

However, Florens and Racine (2012) have shown that smoothing parameters for T and T ∗

could be updated at every iteration step in equation (15) and that this procedure seems to
improve over the mean squared error of the estimator in finite samples.7

Therefore, we proceed as follows:

(i) From our estimators of the r, T and T ∗, discussed above, we construct the initial

condition ϕ̂0 = cT̂ ∗r̂.
(ii) Using ϕ̂0, we can update smoothing parameters for the estimation of T and T ∗.

(iii) From equation (15), we compute ϕ̂1 as:

ϕ̂1 = ϕ̂0 + cT̂ ∗
(
r̂ − T̂ ϕ̂0

)
.

7We would like to thank Jeffrey S. Racine for insightful discussions on this topic.
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(iv) For l = 2, 3, . . . , we repeat steps (ii) and (iii), until the following criterion used in
Florens and Racine (2012) is minimized:

SSR(l) = l

N∑
i=1

[(
T̂ ϕ̂l

)
(wi)− r̂(wi)

]2
, l = 1, 2, . . .

i.e., we stop iterating when this objective function starts to increase. This criterion
function minimizes the sum of square residuals and it is multiplied by the number of
iterations in order to admit a minimum. A typical shape of this function is reported
in figure (3). It can be seen that the function is only locally convex, so that, we need
to check the criterion only after a certain number of iterations has been performed.
In practice, one needs to run a sufficient number of initial iterations. The shape of
the function can then be checked ex-post for local minima.

10
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S
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R
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Figure 3. Stopping function for Landweber-Fridman regularization

3.2.3. Sieve (Petrov-Galerkin) Regularization. The Petrov-Galerkin regularization (GK hence-
forth, most commonly known as sieve regularization) consists on truncating the infinite sum
in (9), by a finite approximation on an a basis (see, e.g. Blundell et al., 2007, Cardot and
Johannes, 2010, Horowitz, 2011, Chen and Pouzo, 2012, Gagliardini and Scaillet, 2012).

As the name of the regularization procedure suggests, the approximation of the function
ϕ is obtained using sieve estimation.

Consider the vector of Legendre polynomials of order JN , as defined above. Our function
ϕ can, therefore, be approximated as:

ϕJN (x) =

JN∑
j=1

pj(x)ϕj = pJN (x)′Φ,
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where ϕj are the Fourier coefficients of ϕ and Φ = [ϕ1, . . . , ϕJN ]. This approximation dras-
tically reduces the dimensionality of our problem: for an infinite dimensional parameter ϕ,
we only require the estimation of a finite number, JN , of Fourier coefficients. Therefore, as
outlined above, the truncation constant JN does not only act as a smoothing parameter for
series estimation, but also as a regularization parameter.

Once we have obtained the estimators of r, T and T ∗ as detailed in section (3.1.2), we can
write:

T̂ ∗T̂XNΦ = T̂ ∗r̂.

As Φ is finite dimensional, the solution of this system of equations can be directly written
as:

Φ̂ =
(
X ′N T̂XN

)−1
X ′N r̂,

and the estimator of ϕ is given by:

ϕ̂JN = XN Φ̂.

For the choice of the regularization parameter JN , we follow the data-driven method
proposed by Horowitz (2014a).8

Define HJN ,s, the space of functions with s square integrable derivatives, spanned by the
family of basis function p·(·), whose Fourier decomposition is truncated at JN . Define further:

ρJN = sup
ν∈HJN ,s,‖ν‖=1

[
‖ (T ∗T )

1
2 ν‖

]−1
.

Blundell et al. (2007) call ρJN the sieve measure of ill-posedness. As N → ∞, to obtain

consistency of the estimator, it is necessary that ρJN (J3
N/N)

1
2 → 0 and ρJN (J4

N/N)
1
2 →∞.

The first step estimation consists of finding a value of JN which satisfies these requirements.
Such a value can be defined as:

JN = arg min
J=1,2,...

{
ρ2JJ

3.5/N : ρ2JJ
3.5/N − 1 ≥ 0

}
i.e., JN is the smallest integer such that ρ2JJ

3.5/N ≥ 1. The method for determining this
value of JN has two steps:

(i) Obtain an estimator of ρ2J . Such an estimator can be obtained by noticing that

ρ̂−2J is the smallest eigenvalue of the matrix T̂ ∗T̂ , where the conditional expectation
operators are estimated by a polynomial of order J .

(ii) Finally, define:

JN = arg min
J=1,2,...

{
ρ̂2JJ

3.5/N : ρ̂2JJ
3.5/N − 1 ≥ 0

}
Hence, one can define:

ϕ̃JN = XN Φ̂,

as a first step estimator of ϕ.

8Other recent papers have also proposed data-adaptive choices of the regularization parameter in such a
context. See Chen and Christensen (2015) and Liu and Tao (2014).
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Horowitz (2014a) then proposes to find the optimal data-driven value of the truncation
parameter as the minimum of the following function:

SN(J) =
2

3N2
log(N)

N∑
i=1

{[
yi − ϕ̃JN (xi)

]2 J∑
j=1

[(
T̂ T̂ ∗

)−1
T̂ pj(x)

]
(wi)

2

}
− ‖ϕ̂J‖2,

with 1 ≤ J ≤ JN . A typical shape of this criterion is drawn in figure (4).

−
31

8
−

31
7

−
31

6
−

31
5

−
31

4

1.0 1.5 2.0 2.5 3.0 3.5 4.0

J

S
N
(J

)

Figure 4. Choice of ĴN for Galerkin regularization.

A final remark on GK regularization is about the variance of the estimator in finite samples.
The GK estimation procedure is a nonparametric generalization of the TSLS estimator.
Mariano (1972), in an influential paper, shows that the TSLS estimator in the normal case
only possesses moments of order p−q+1, where p is the dimension of the endogenous variable
and q the dimension of the instruments. Therefore, if one uses the same dimension for the
matricesWn and Zn, our GK would possibly have only finite mean, but infinite variance. In
order to obtain a finite variance in our sample, we hence include an additional term in the
matrix Wn, so that its dimension is JN + 1.

4. Monte-Carlo Simulations

In this section, we analyze the performances of the various estimators previously discussed
using data-driven methods. In order to simplify our comparison, we analyze only three
estimators: TK with local linear kernels; LF with local linear kernels; and GK with Legendre
polynomials.9

In this simulation exercise, we fix the joint distribution of the endogenous variable and the
instrument, and we focus our sensitivity analysis on the smoothness of the function ϕ. This

9In practice, we could combine Legendre polynomials with TK or LF regularization, but we do not explore
it in this work. Interested readers are referred to Chen and Pouzo (2012) and Centorrino (2015).
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is potentially more important for applied research, as economic theory may provide some
guidance about the properties of the regression function while little may be known about
the smoothness of the joint distribution of the data.10

The numerical example used in this paper is based on the framework adopted by Darolles
et al. (2011), Florens and Simoni (2012) and Florens and Racine (2012). The main data
generating process follows equation (1a):

Y = ϕ(X) + U,

whereE(U |X) 6= 0 so that endogeneity is present. We simulate independently the instrument
W and two disturbances U and V . We then define the endogenous variable X as a function
of W , U and V . In particular, we have the following:

W ∼N (0, 25)

V ∼N
(
0, (0.5)2

)
U ∼N

(
0, (0.25)2

)
X =

1

1 + exp (−(0.4W + 5U + V ))
.

The main difference with the numerical examples reported in other papers is that the en-
dogenous variable, X, is a nonseparable function of the instrument, W , and the disturbances,
U and V . The companion code for this paper has been programmed in Matlab.

We work with a modest sample size of 1000 observations and we draw 1000 replications
of the error terms, V and U , and the instrument, W . Since the regressor X is changing for
each one of these replications, we evaluate the estimation of ϕ on a grid of 100 equispaced
points in (0, 1).

A typical sample of W and X is reported in figure (5).
We set the function ϕ as follows.

ϕ1(x) = 1− 1.5x

ϕ2(x) =
√

2x2

ϕ3(x) = 0.5 sin(1.5πx),

where the three functions have an increasing degree of smoothness. The first is a linear
specification, and it is helpful to study the performance of the nonparametric estimator com-
pared to the TSLS estimator. The second is quadratic and, while it may fail to be captured
by a simple linear specification, it can be approximated by a second order polynomial. Fi-
nally, the last function is highly nonlinear and infinitely smooth. In this last case, the linear
model is not appropriate for the estimation and the use of nonparametric methods becomes
necessary.

Figure (6) reports the result of our estimation for one randomly chosen simulation. Each
panel in the figure considers one specification for the regression function ϕ. The continuous

10Of course a nonparametric density estimator of the joint density of X and W can be obtained from the
sample. However, besides the jointly normal case (Hoderlein and Holzmann, 2011), we are not aware of any
other scenarios in which information about the smoothness properties of the joint density can be directly
used for estimation.
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Figure 5. A typical draw from the joint distribution of X and W .

black line in each figure represents the true function; the dashed red line is the TK estimator
with local linear kernels; the dashed blue line is the LF with local linear kernels; finally, the
dashed green line is the GK with Legendre polynomials.

From this figure, it can be clearly noticed that the GK estimator has a comparative
advantage with respect to the TK and LF estimators when the function has a lower degree
of smoothness. A polynomial of relative low dimension can, in fact, easily capture the
specification for both the linear and the quadratic model. This advantage is also somehow
maintained when the order of smoothness of the function increases, although the fitting of
the GK estimator is not as good as for the linear and the quadratic case. Both the TK and
the LF estimator are more oscillating than the GK estimator. This should be expected as
the kernel estimation is local in nature and a constant bandwidth over the entire support can
cause some bumps in the estimated curve. The Tikhonov estimator with CV regularization
parameter seems to have a higher variation than the LF estimator which is compensated by
a smaller bias.

This comparison is further carried in terms of squared bias, variance, Mean Squared Error
(MSE) and Mean Integrated Squared error over the entire set of simulations.

Table (1) reports the median squared bias, variance and MSE, along with the MISE for
each estimator. For comparison, we have also reported these values for the TSLS estimator.
While the latter constitutes an important benchmark for the linear case, it is clear that its
performance is worsening as the complexity of the regression function increases. However,
we believe that the comparison is still relevant as it gives us a hard measure about how much
we improve over the linear estimator when ϕ is nonlinear.

The reported results confirm our initial intuition. The GK estimator dominates the TK
and LF estimators in all the simulation studies. In fact, its squared bias and variance
are smaller and so is the median MSE and MISE. The TK and LF have a clear squared
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Figure 6. The true function (black line) against TK (dashed red line), LF
(dashed blue line) and GK (dashed green line) estimators for the three specifi-
cations of the function ϕ over one simulated sample. The gray points represent
the simulated data.

bias-variance trade-off. While the TK estimator has a smaller bias, which is in some cases
comparable with the one of the GK estimator, its variance is the largest among the estimators
studied in this work. This is most likely a feature of CV as a selection criterion for the choice
of the smoothing and regularization parameters. Moreover, the variance of the LF estimator
might be reduced by the fact that the smoothing parameters are updated at each iteration,
which is not the case for the TK estimator. On the contrary, LF has the largest bias. Since
the selection of the smoothing parameter for TK and LF is the same, we can conjecture
that large squared bias may be due to an insufficient number of iterations. That is, to an
insufficient regularization of the estimator.
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MISE Median MSE Median Bias2 Median Variance
ϕ1(x) TK 0.00225 0.00235 0.00040 0.00180

LF 0.00247 0.00245 0.00134 0.00107
GK 0.00057 0.00058 0.00022 0.00035
TSLS 0.00012 0.00011 0.00000 0.00011

ϕ2(x) TK 0.00301 0.00308 0.00037 0.00258
LF 0.00376 0.00354 0.00209 0.00137
GK 0.00068 0.00072 0.00019 0.00045
TSLS 0.01229 0.01174 0.01155 0.00013

ϕ3(x) TK 0.00639 0.00521 0.00236 0.00267
LF 0.01123 0.00839 0.00687 0.00211
GK 0.00175 0.00146 0.00063 0.00074
TSLS 0.05069 0.03546 0.03518 0.00020

Table 1. MISE and Median MSE, Squared Bias and Variance for each esti-
mator and functional form of ϕ.

This is further explored in Table (2), where we report the summary statistics for the
regularization parameter chosen using each one of the selection criteria presented above. In
order to make the TK regularization comparable with LF and GK, we have reported the
summary statistics for the parameter 1/α instead.

Again, the summary statistics for the regularization parameters are broadly consistent
with our previous discussion. The CV tends to regularize less than the SSR criterion for
LF regularization. This perfectly explains the trade-off between squared bias and variance
formerly discussed. For the GK estimator, we can see that the data-driven selection of the
truncation constant delivers very little variation in the value of the regularization parameter.
In particular, when the function is very smooth, the criterion always selects JN = 3. This
could also be a reason of the advantage of GK over TK and LF. While in the latter we
require the choice of two smoothing and one regularization parameters, GK only needs us
to pick a constant which serves both for smoothing and regularizing.

Mean Median St.Dev Min Max
TK 65.9 59.6 28.6 5.6 189.1

ϕ1(x) LF 10.9 10.0 3.2 5.0 44.0
GK 2.1 2.0 1.0 1.0 3.0
TK 93.9 88.3 44.1 6.6 297.9

ϕ2(x) LF 11.8 11.0 3.2 5.0 27.0
GK 2.5 2.0 0.5 2.0 3.0
TK 48.6 44.8 20.9 3.8 160.1

ϕ3(x) LF 14.8 13.0 6.6 4.0 46.0
GK 3.0 3.0 0.0 3.0 3.0

Table 2. Summary statistics for the regularization parameter.
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Finally, we also report in Table (3) some summary statistics for the computational time
(in seconds). It is evident that the GK type regularization holds an advantage upon all other
estimators. This is due to the fact that GK does not require a cross-validated tuning of the
smoothing parameter, which can be computationally very costly. Moreover, the dimension
of the estimated operator is reduced from the number of observations to the number of bases
after truncation, which impacts computational time tremendously. Hence, although we only
focus here on a fixed sample size, we expect that the gap in computational time between
the GK regularization type and the other estimators spreads further as N increases. A
final comment is about the difference between TK and LF regularization. TK regularization
still holds an advantage in terms of computational time. This is because the choice of the
smoothing parameter is performed only once in TK, while for LF it has to be repeated as
many times as the number of iterations. Furthermore, the sample size considered in our
simulation study is relatively mild and the inversion of the regularized operator does not
require excessive CPU memory. However, as the sample size increases, the computation of
the inverse operator becomes very costly and this computational advantage may disappear.

Mean Median St.Dev Min Max
TK 96.93 91.57 33.87 42.73 391.32
LF 1149.90 982.79 482.73 302.74 5289.23
GK 0.84 0.81 0.23 0.22 2.88

Table 3. CPU time for each estimator (in seconds).

5. Including additional exogenous variables: an empirical application to
the estimation of the Engel curve for food in rural Pakistan

While the Monte-Carlo study is useful to compare the performances of different estimators
in the simple framework of one endogenous variable and one instrument, applied researchers
are often aiming at estimating models with several other exogenous controls, Z. In general,
we could flexibly extend our model in such a way that:

(18) Y = ϕ(X,Z) + U,

with E [U |Z,W ] = 0. In this case, we could simply extend the definition of our conditional
expectation operators so that:

T :L2
X,Z → L

2
W

T ∗ :L2
W → L

2
X,Z ,

and ϕ would still be defined as the solution of the following equation:

Tϕ = r.

Notice that estimation is carried exactly in the same way as detailed before, with the minor
exception that now T ∗ defines the conditional expectation over functions of both X and Z.

Three points are worth mentioning. In the nonparametric setting, Z and W do not have
elements in common. Compactness of the operator would be lost in this case (Carrasco
et al., 2007). Furthermore, empirical researchers may be worried that, in order to identify
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ϕ, we would need as many instruments as the joint dimension of X and Z. This is however
not the case. Despite the fact that now ϕ is a joint function of X and Z, it is still only one
object that we are trying to identify, so only one (sufficiently strong) instrument would be
enough for identification and estimation.11 Finally, the endogenous variable X should not
necessarily be scalar. We can, therefore, include in this more general framework cases in
which an empirical researcher faces more than one continuous endogenous regressor.

However, a model like the one in equation (18) suffers from the curse of dimensionality
common to nonparametric regressions, especially when the dimension of the exogenous vari-
able Z gets large. Moreover, its interpretation may not be straightforward. Therefore, in this
section we look into simpler strategies for the estimation of models with several exogenous
controls.

In nonparametric statistics and econometrics, in order to avoid the curse of dimensionality,
it is common to construct additive specifications of the more general model in (18) (Horowitz
and Mammen, 2004, Horowitz, 2014b). That is, one might consider the following specification
for the function ϕ:

ϕ(X,Z) = ϕx(X) +
k∑
j=1

mj(Zj),

where k is the dimension of Z. However, to the best of our knowledge, methods to estimate
such an additive structure in regression models with endogenous variables using instruments
are not available yet.12 However, recent papers have provided estimation procedures for the
following semiparametric structure (Ai and Chen, 2003, Florens et al., 2012):

ϕ(X,Z) = ϕx(X) + Zγ,

that has been first studied by Robinson (1988) in the purely exogenous context. In this
partially linear specification, we maintain the component of ϕ that depends on X unspecified
and we model other exogenous controls to enter in a linear fashion. This modeling strategy is
sufficiently flexible to allow us to include many exogenous controls without incurring in the
curse of dimensionality. Moreover, the interpretation of the results from this model remains
straightforward.

In this last section, we present an application of this partially linear specification to the
estimation of the Engel curve for food. The empirical study is not original to this work: the
goal of this session is, therefore, to discuss how nonparametric instrumental regressions can
be flexibly embedded in models with several other exogenous controls, using a partially linear
specification. The database is the one used in Bhalotra and Attfield (1998) and consists of
9740 rural households in Pakistan with less than 20 members.

The Engel curve relationship describes the expansion path for commodity demands as the
household’s budget increases. To estimate its shape, it is sufficient to regress the share of the
household’s budget spent for a given commodity (or group of commodities) over the total

11Notice, however, that the completeness condition for identification would be particularly strong as the joint
dimension of X and Z increases. Our instrument should be sufficiently informative to capture the variation
of all square-integrable functions of both X and Z.
12A recent paper by Ozabaci et al. (2014) looks into the estimation of additive models with endogenous
regressors using a control function approach.
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budget. However, as pointed out in Blundell et al. (2007), the total budget is likely to be
determined jointly with the share of expenditure across consumption goods. Hence, it is
an endogenous regressor. Blundell et al. (2007) suggest using other sources of income as a
suitable instrument for total expenditure.

We thus denote as the random variable Y , the share of expenditure in a given consumption
good; as X, the total log expenditure of the household; and, as W the log gross income of
the household head.

Blundell et al. (2007) devise and apply a sieve minimum distance framework to the shape-
invariant estimation of this curve using a sample of British households. This specification
allows for a nonparametric modeling of the endogenous variable X, minus a parametric com-
ponent which scales the function according to some household characteristics; and a linear
parametric component, which explicitly controls for household’s demographics. Bhalotra
and Attfield (1998) use a partially linear model, in which X enters in a nonlinear fashion,
and household’s characteristics are modeled parametrically. In the results reported in the
paper, they do not explicitly control for potential endogeneity of X. They claim that, when
using a control function approach with W as a control variable, their results do not differ
substantially. However, the control function is taken to be linear in W , while substantial
nonlinearity may actually be present in the relation between income and total expenditure.

Here, we follow the partially linear specification of Bhalotra and Attfield (1998):

(19) Y = ϕ(X) + Zγ + U, E(U |W,Z) = 0,

where ϕ represents the shape of the Engel curve and Z is a vector of controls that enter
the model linearly. These controls include the size of the household, the order of birth of
male/female children and the literacy of the household head and his/her spouse. The main
difference with respect to the original paper is that we are going to explicitly take into
account the endogeneity of X and estimate the (possibly) nonlinear shape of the function
using nonparametric instrumental regressions. In order to reduce the computational cost and
some of the heterogeneity in the sample, we only consider households living in the region of
Punjab. This choice is justified by the fact that this province accounts for around 60% of
the sample and the results obtained in Bhalotra and Attfield (1998) are mostly driven by its
demand paths. Moreover, we also trim 1% of our observations at low densities for Y . We,
therefore, end up using a sample of 5635 observations.

In this database, food, as a broad aggregate of 82 commodities, accounts on average for
about 51% of the total household expenditure in Punjab (see table 4).

Mean St.Dev Min Max
Log PC Expenditure 5.60 0.47 4.22 7.91
Log PC Income 5.62 0.51 3.98 8.00
Budget share food 0.51 0.10 0.17 0.75

Table 4. Summary statistics

In the original work of Bhalotra and Attfield (1998), it is shown that the Engel curve
for food is decreasing, as predicted by Engel’s law and has a quadratic shape. This latter
result is of great interest as a quadratic Engel curve seems to be a feature of developing
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economies. However, as reported by Blundell et al. (2007), neglecting potential endogeneity
in the estimation can lead to incorrect estimates of the Engel curve shape.

Our goal is to assess the robustness of previous results and provide some additional evi-
dence using the nonparametric instrumental variable approach.

In order to estimate the partially linear model in (19), we use the following backfitting
approach. For a given value of γ, ϕ is defined as the solution of the following equation:

E [Y − Zγ|W ] = E [ϕ(X)|W ] .

In the same way, for a given value of ϕ, we can obtain γ as the OLS regression of the
dependent variable Y −ϕ(X) over Z. We iterate this backfitting approach until convergence
of the following sample criterion:

SSR(ϕ, γ) =
N∑
i=1

(yi − ϕ(xi)− ziγ)2 .

We obtain confidence bands for the nonparametric estimator of ϕ and standard errors for
γ using pairwise bootstrap. We sample with replacement from the joint distribution of
(Y,X,Z,W ). This bootstrap procedure has been shown to be uniformly valid in the case
of GK regularization by Horowitz and Lee (2012), although to the best of our knowledge,
theoretical results about the validity of bootstrap confidence bands in Nonparametric IV
using TK or LF regularizations do not yet exist. Therefore, for some of the estimators
reported here, the confidence bands are only meant to give an idea about the variability of
the estimation, but they should not be interpreted as valid.

We also compare the nonparametric specification with a parametric quadratic model,
which also takes into account the endogeneity issue and is estimated using a control function
approach:

Y = β1X + β2X
2 + Zγ + V δ + U(20)

X = ζ(Z,W ) + V(21)

E (U |X, V ) = E (U |V ) .(22)

The link function ζ is estimated using local constant kernels and rule-of-thumb band-
widths, to reduce the computational time, given the high dimensionality of Z. The coeffi-
cients (β1, β2, γ, δ) are instead estimated using simple OLS. The results for the estimation
of β1, β2 and δ are summarized in table (5), where the standard errors reported are het-
eroscedasticity robust. We can see that all coefficients are significant. The one associated
with the quadratic component is very small but significantly negative.13

Intercept Log PC Exp Log PC Exp2 V̂
Coefficient 0.39 0.14 -0.02 -0.06
Std.Error 0.14 0.05 0.00 0.01

Table 5. Results from model (20). Dependent variable: share of budget for food.

13The results for the estimation of γ in all models are not reported here.
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The results of the semiparametric estimation of the Engel curve for Pakistan data are
reported in Figure (7). For each estimator, we present the estimation outcome and its
95% bootstrap confidence intervals. Moreover, for graphical comparison, we also draw the
quadratic fitting obtained using the control function approach in (20), which is represented
by the continuous magenta line.
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Figure 7. Estimation of the Engel curve for food in rural Pakistan. The
black continuous line denotes the estimator of ϕ; the dashed black lines are
the 95% confidence interval; and the continuous magenta line is the quadratic
specification that uses control functions.

Our results are largely consistent across the different frameworks and also confirm the
quadratic shape of the Engel curve found in Bhalotra and Attfield (1998). However, com-
pared to the control function estimators, all the IV estimators show a much less pronounced
quadratic shape. This can be due to the bias introduced by the regularization procedure.
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In fact, the quadratic control function estimator is between the confidence bounds of the
TK estimator, which has the largest variance within the IV estimators, as suggested by our
simulation study and, therefore, possibly a smaller regularization bias. However, the con-
trol function estimator is outside the bootstrap confidence intervals for both GK and LF
estimators, especially towards the boundary of the support. Hence, the nonparametric IV
estimators seem to support the main result about the quadratic shape of the Engel curve.
However, they point out that the marginal effects could be locally closer to being constant
than those predicted by a control function approach.
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Figure 8. Estimation of expenditure elasticity. TK (dashed red line), LF
(dashed blue line), GK (dashed green line) and quadratic control function
(magenta line).

In order to explore this point further, we also consider the derivative of each estimator
and compute an estimate of the expenditure elasticity (ε(x)) as:

ε̂(x) = 1 +
ϕ̂′(x)

ϕ̂(x)
.

We briefly point out here that the derivative of each estimator is obtained using directly the
first order coefficient of the local linear approximation, for TK and LF, and by differentiation
of the Legendre polynomial basis for GK.14

The elasticities are again broadly consistent with existing evidence (see Figure 8). They
are strictly included between 0 and 1, as food is a necessity good. They are also relatively

14A further remark is that we compute here a self-consistent first derivative of the estimator of ϕ and not
an estimator of the first derivative, as it is usually achieved by Hilbert Scale or Sobolev penalization in the
nonparametric instrumental regression literature (see Blundell et al., 2007, Chen and Pouzo, 2012, Florens
et al., 2011, Florens and Racine, 2012).
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higher than the values obtained for developed countries (Banks et al., 1997, find an average
elasticity of 0.3 in a sample of UK households).

We can also see that the TK estimator displays more variation than the control function
and the other nonparametric estimators. However, the figure also suggests that the control
function approach may be very sensitive to outliers in the sample. In fact, the elasticity
estimated from control functions follows the trend of the TK estimate, but without capturing
the local variability present in the data, due to the quadratic restriction over the entire
support of X. This may confirm our intuition that the shape of the control function estimator
may be driven by outliers and, therefore, locally underestimate the elasticity.

6. Conclusions

This paper presents an overview of the practical implementation of nonparametric instru-
mental regressions. We consider the small sample properties of various estimators in a single
endogenous covariate and single instrument framework. A simulation study shows the per-
formances of these estimators and provides a review of some of the data-driven approaches
that have been proposed so far for the selection of the regularization parameter. Finally,
an application to the estimation of the Engel curve for food in a sample of households in
rural Pakistan shows its practical usefulness and how additional exogenous covariates can
be flexibly embedded using a partially linear specification.

Our intention is to give a unified and simple presentation of the several regularization
procedures that can be considered when applied researchers would like to keep the flexibility
of nonparametric estimation in the presence of endogenous regressors.

We present what we consider to be the state-of-the-art of the literature on Additive Non-
parametric Instrumental Regression and we acknowledge that ongoing and future research
can fill some of the blind spots of our work.

Our findings suggest that GK (sieve) regularization holds an advantage over TK and
LF regularization. We guess that something may be lost in the sequential choice of the
smoothing and the regularization parameters in the latter regularization schemes. Future
research should, therefore, try to tackle the joint selection of these parameters in both the
aforementioned regularization schemes.

Moreover, we have not deeply discussed any estimation procedure that accounts for more
than one endogenous variable. While Florens et al. (2012) study a partially linear specifica-
tion, as the one used in our empirical application, where Z could also contain endogenous
regressors, we are not aware of any other existing work that studies a more flexible nonpara-
metric approach for multiple endogenous variables. For instance, one could easily imagine
an extension of the nonparametric additive regression model with both multiple endogenous
and exogenous regressors.

Finally, while confidence intervals are useful to infer the variability of the estimator, a
much wider set of inference procedures may be needed. A recent contribution in this respect
is the work of Chen and Pouzo (2015), in which the authors present valid procedures for
the construction of Wald and Quasi Likelihood Ratio tests within the framework of sieve
regularization.
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Johannes, J. and Schwarz, M. (2011), ‘Partially adaptive nonparametric instrumental re-
gression by model selection’, Journal of the Indian Statistical Association 49(2), 149–175.

Kress, R. (1999), Linear integral equations, Applied mathematical sciences, Springer-Verlag.
Li, Q. and Racine, J. (2004), ‘Cross-Validated Local Linear Nonparametric Regression’,
Statistica Sinica 14, 485–512.

Li, Q. and Racine, J. (2007), Nonparametric Econometrics: Theory and Practice, Princeton
University Press.

Liu, C.-A. and Tao, J. (2014), ‘Model Selection and Model Averaging in Nonparametric
Instrumental Variables Models’, Working Paper .

Mariano, R. S. (1972), ‘The Existence of Moments of the Ordinary Least Squares and Two-
Stage Least Squares Estimators’, Econometrica 40(4), pp. 643–652.

Müller, H.-G. (1991), ‘Smooth Optimum Kernel Estimators Near Endpoints’, Biometrika
78(3), pp. 521–530.

Newey, W. K. (1997), ‘Convergence rates and asymptotic normality for series estimators’,
Journal of Econometrics 79(1), 147 – 168.

Newey, W. K. (2013), ‘Nonparametric Instrumental Variables Estimation’, American Eco-
nomic Review 103(3), 550–56.

Newey, W. K. and Powell, J. L. (2003), ‘Instrumental Variable Estimation of Nonparametric
Models’, Econometrica 71(5), 1565–1578.

Ozabaci, D., Henderson, D. J. and Su, L. (2014), ‘Additive Nonparametric Regression in
the Presence of Endogenous Regressors’, Journal of Business Economics and Statistics
32(4), 555–575.

Robinson, P. M. (1988), ‘Root-N-Consistent Semiparametric Regression’, Econometrica
56(4), pp. 931–954.

Santos, A. (2012), ‘Inference in nonparametric instrumental variables with partial identifi-
cation’, Econometrica 80(1), 213–275.

Sokullu, S. (2015), ‘A Semiparametric Analysis of Two-Sided Markets: An application to
the Local Daily Newspapers in the U.S.’, Journal of Applied Econometrics Forthcoming.

Vogel, C. (2002), Computational Methods for Inverse Problems, Frontiers in Applied Math-
ematics, Society for Industrial and Applied Mathematics.


