EEO315: Electronics Fall 2016

2016-2017 Catalog Description:

	Introduction to electronics, concentrating on the fundamental devices (diode, transistor, operational amplifier, logic gate) and their basic applications; modeling techniques; elementary circuit design based on devices.
Course Designation:	Required
Text Book:	Donald A. Neamen, ``Microelectronics Circuit Analysis and Design," McGraw Hill, 4 th Edition, 2010.
Prerequisites :	Circuits and Digital Logic
Credit Hours:	3 credits
Coordinator:	Kamoua
Goals:	To teach students analysis and design techniques of discrete and integrated analog circuits. Applications of diodes to waveform shaping and voltage regulation. Applications of transistors to signal amplification.

Course Learning Outcomes: Studens should be able to: 1) analyze and design diode circuits such as rectifiers, voltage regulators, clampers, and clippers, 2) analyze and design single-stage and multi-stage bipolar junction transistor amplifiers, 3) analyze and design single-stage and multi-stage field effect transistor amplifiers, 4) determine the low and high frequency response of amplifiers.

Topics Covered:

Week 1.	Basic concepts of semiconductor physics: electrons, holes, carrier concentration, doping, temperature effects, p-n junction, p-n diode, forward bias, reverse bias, I-V characteristics
Week 2.	Graphical analysis of diode circuits. Loadline. Analysis of circuits containing ideal diodes. Half-wave and full-wave rectifiers. Filtering.
	containing ideal diodes. Han-wave and full-wave fectifiers. Filtering.
Week 3.	Zener diode. Voltage regulation. Bipolar junction transistors (BJT).
Week 4.	BJT characteristics. Amplifier with common-emitter. DC and AC analysis. Load line.
Week 5.	Small-signal parameters. Voltage gain. Input and output impedance. Review for Test1.

Week 6.	Test 1. Common-collector and common-base configurations.
Week 7.	Multistage amplifiers.
Week 8.	MOSFET. Enhancement-mode and depletion-mode devices. N- and
	p-channel devices. MOSFET I-V characteristics.
Week 9.	Common-source amplifier. Enhancement-load and depletion-load
	amplifiers. Active load. Current mirror.
	Review for Test 2.
Week 10.	Test 2. Common-drain and common-gate amplifiers. MOSFET
	multistage amplifiers. Time constants and frequency response.
Week 11.	Review.
Week 12.	Coupling and bypass capacitors. Bode plot.
Week 13.	Miller Effect, high frequency response
	Review for Test 3.
Week 14.	Test 3.
	Review for Final Exam.

Class/laboratory Schedule: 3 lecture hours per week.

Student Outcomes	% contribution*
 ✓ (a) an ability to apply knowledge of mathematics, science and engineering □ (b1) an ability to design and conduct experiments 	40
 (b2) an ability to analyze and interpret data (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, 	20
health and safety, manufacturability, and sustainability (d) an ability to function on multi-disciplinary teams	
\checkmark (e) an ability to identify, formulate, and solve engineering problems \Box (f) an understanding of professional and ethical responsibility \Box (c) an ability to communicate effectively.	40
 (g) an ability to communicate effectively (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context 	
 (i) a recognition of the need for, and an ability to engage in life-long learning (j) a knowledge of contemporary issues 	
\checkmark (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	
□ Any other outcomes and assessments? * Assume that the total contribution of any course will be 100%. Use the right ha	nd column to

* Assume that the total contribution of any course will be 100%. Use the right hand column to indicate the approximate percent that the left hand columns contribute to the overall course.

Document Prepared by: Ridha Kamoua on 5/24/2017