ELECTROMAGNETICS AND TRANSMISSION LINES – ESE319 Syllabus

ABET COURSE OUTCOMES:

Fundamental aspects of electromagnetic wave propagation and radiation, with application to the design of high speed digital circuits and communication systems. Topics include: solutions of Maxwell's equations for characterization of EM wave propagation in unbounded and lossy media; radiation of EM energy; guided wave propagation with emphasis on transmission line theory.

PRE-REQUISITES REQUIREMENTS: - ESE271

Students should have a good understanding of complex algebra, vector calculus and, basic circuit analysis techniques.

Goal for this course

The goal is to establish a fundamental understanding of electromagnetic wave propagation and its role in the design of high speed electronic circuits and communication systems.

Objectives that are related to this Goal

- 1. Transmission line fundamentals
- 2. Application to high speed digital circuits and communication systems
- 3. Electromagnetic wave propagation in lossy media
- 4. Radiation fundamentals

Week 1	Introduction, EM spectrum, complex numbers RLC circuits, speed of
	signal transmission
Week 2	Current flow in conductors, space and time Transmission lines,
	Telegrapher's equations
Week 3	Terminations, reflection coefficient, Smith Chart
Week 4	Lossy and dispersive TL. Vectors and co-ordinate systems
Week 5	Electrostatics – Coulomb, Gauss's
Week 6	Dielectric materials, capacitance, Magnetic fields, Ampere's law
Week 7	Magnetic forces, inductance, Boundary conditions and Laplace Equation
Week 8	Time varying fields
Week 9	Maxwell's equations, time harmonic EM wave
Week 10	EM wave propagation - plane wave solution, polarization
Week 11	EM wave propagation in lossy medium, Reflection and transmission
Week 12	Radiation fields: Short dipole antenna – antenna characteristics,
	Radiation power and resistance
Exams	Test 1; Test 2; Final:

COURSE TEXTBOOK:

Fundamentals of Applied Electromagnetics (7th ed), Fawwaz T. Ulaby,

B001ITRPCS

Eric Michielssen, Umberto Ravaioli, Prentice Hall (2015), ISBN-13: 9780132139311

PROGRAM OUTCOMES AND ASSESSMENT	% contribution*
course:	
- (a) ability to apply knowledge of math, engineering, and science	75
$\stackrel{l}{=}$ (b1) ability to design and conduct experiments	
-1 (b2) ability to analyze and interpret data	5
$\stackrel{H}{=}$ (c) ability to design system, component or process to meet needs	
$\stackrel{\text{\tiny L}}{}$ (d) ability to function on multi-disciplinary teams	
-1 (e) ability to identify, formulate, and solve engineering problems	10
$\stackrel{\text{\tiny L}}{}$ (f) understanding of professional and ethical responsibility	
(g) ability to communicate effectively	5
$\stackrel{L}{}$ (h) broad education	
[□] (i) recognition of need an ability to engage in life-long learning	
[□] (j) knowledge of contemporary issues	
-1 (k) ability to use techniques, skills, and tools in engineering practice	5
[⊥] Any other outcomes and assessments?	