

Syllabus

1. Course Staff and Office Hours				
Instructor:	Sangjin Hong Sangjin.hong@stonybrook.edu Light Engineering Building 201			
Office Hours:	Tuesday and Thursday, 10:00am to 12:00pm Other hours by appointment			
Instruction Location:	S B Union 103-02 1:15pm to 2:35pm			
Instruction Delivery:	In-person			
TAs:	To be announced			

Office hours and locations may change. Please check Blackboard for most up-to-date information.

2. Course Description

Introduction to topics in computational mathematics, such as number systems, Boolean algebra, mathematical induction, combinatorial probability, recursion and graph theory. Algorithm aspects of the topics discussed will be emphasized. **Fall.**

Co-requisites: ESE 123

Credits: 3

3. Textbook (eBook is included in WebAssign)

"Discrete Mathematics with Applications," by Susanna S. Epp, Fifth Edition, 2018. Brooks/Cole Cengage Learning. ISBN: 978-1-337-69419-3

4. Course Learning Objectives

Upon completion of the course, students will have

- ability to apply knowledge of mathematics, science and engineering;
- an ability to identify, formulate, and solve engineering problems;
- an ability to use techniques, skills, and modern engineering tools necessary for engineering practice.

5. Student Learning Outcomes

	Student Outcomes	% contribution
1	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.	40%
2	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.	40%
3	an ability to communicate effectively with a range of audiences.	
4	an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.	
5	an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.	10%
6	an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgement to draw conclusions.	10%
7	an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.	

6. Topics Covered

Week 1	Language of Sets Language of Relations and Functions Logical Form and Logical Equivalence Conditional Statements, Valid and Invalid Arguments
Week 2	De Morgan's Theorem, Boolean Expression Digital Circuits and Number Systems
Week 3	Predicates and Quantified Statements Statements and Quantifiers Arguments and Quantifiers
Week 4	Direct Proof and Counter Example Rational Number and Divisibility
Week 5	Quotient-Remainder Theorem Indirect Proof and Contradiction Indirect Argument
Week 6	Sequence and Mathematical Induction Recurrence and Recursion
Week 7	Functions of Sets Composition of Functions Cardinality and Computability

Week 8	Relations on Sets
	Equivalence Relations
	Modular Arithmetic and Applications
Week 9	Sample Space
	Counting
Week 10	Pigeonhole Principle
	Pascal's Formula and Binomial Theorem
	Probability and Expected Value
Week 11	Conditional Probability
	Bayes' Formula and Applications
Week 12	Graph, Paths, and Connectivity
	Traveling-Salesman Problem
	Directed Graphs
Week 13	Binary Trees
	Priority Queues, Heaps
Week 14	Spanning Trees and Shortest-Paths
	Tree Analysis

7. Assignments

7.1. Homework Assignments

Homework Assignments will be issued roughly weekly. A full schedule is available on Blackboard. (This schedule will be updated as needed.) All assignments will be due at the *beginning* of class on the assigned day. Please see the Late Homework Policy, below.

All homework assignments must be turned in on paper. Writing or typing your solutions electronically is great, but you must print them out and submit the paper copy.

7.2. Collaboration Policy

Homework assignments are to be completed individually.

8. Grading

Your grade will be based on labs, homework assignments, two midterm examinations, and one final examination.

Homework Assignments	
Midterm #1	15%
Midterm #2	15%
Midterm #3	15%
Final Exam	30%

9. Academic Honesty

Any academic dishonesty on a written homework will result in a zero grade for the assignment for all parties involved.

All exam work must be entirely your own with no collaboration or outside materials/information. Any academic dishonesty on the midterm exams or the final exam will result in failing the course. The case will be submitted to the College of Engineering's Committee on Academic Standing and Appeals.

10. Electronic Communication Statement

Email and especially email sent via Blackboard (http://blackboard.stonybrook.edu) is one of the ways the faculty officially communicates with you for this course. It is your responsibility to make sure that you read your email in your official University email account. For most students that is Google Apps for Education (http://www.stonybrook.edu/mycloud), but you may verify your official Electronic Post Office (EPO) address at http://it.stonybrook.edu/help/kb/checking-or-changing-your-mail-forwarding-address-in-the-epo.

If you choose to forward your official University email to another off-campus account, faculty are not responsible for any undeliverable messages to your alternative personal accounts. You can set up Google Mail forwarding using these DoIT-provided instructions found at http://it.stonybrook.edu/help/

kb/setting-up-mail-forwarding-in-google-mail.

If you need technical assistance, please contact Client Support at (631) 632-9800 or supportteam@stonybrook.edu.

11. Student Accessibility Support Statement

If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact the Student Accessibility Support Center, 128 ECC Building, (631) 632-6748, or at sasc@Stonybrook.edu. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

12. Academic Integrity Statement

Each student must pursue their academic goals honestly and be personally accountable for all submitted work. Representing another person's work as your own is always wrong. Faculty is required to report any suspected instances of academic dishonesty to the Academic Judiciary. Faculty in the Health Sciences Center (School of Health Technology & Management, Nursing, Social Welfare, Dental Medicine) and School of Medicine are required to follow their school-specific procedures. For more comprehensive information on academic integrity, including categories of academic dishonesty please refer to the academic judiciary website at http://www.stonybrook.edu/commcms/academic_integrity/index.html

13. Critical Incident Management Statement

Stony Brook University expects students to respect the rights, privileges, and property of other people. Faculty are required to report to the Office of Student Conduct and Community Standards any disruptive behavior that interrupts their ability to teach, compromises the safety of the learning environment, or inhibits students' ability to learn. Until/unless the <u>latest COVID</u> guidance is explicitly amended by SBU, during Fall 2021"disruptive behavior" will include refusal to wear a mask during classes.