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Abstract of the Dissertation

Studies of Renormalization-Group Flows in Quantum Field Theories

by

Gongjun Choi

Doctor of Philosophy

in

Physics

Stony Brook University

2018

A transformation of the scheme used for regularization and renormaliza-
tion in a quantum field theory is a map that connects coupling spaces of a
theory in different schemes of this type. Especially in quantum chromody-
namics, there have been active studies inventing schemes aimed at trying to
reduce higher-order corrections in perturbative calculations, which work well
for the coupling very close to zero. However, the problem becomes differ-
ent provided one aims at studying a scheme transformation for values of the
coupling away from zero, as is relevant for a vanishing of the beta function
away from the origin. It turns out that many existing scheme transforma-
tions that work well for the coupling near zero cannot be applied so simply
for the coupling away from zero (but still in the perturbative regime, i.e.
g2/4π = α ≤ 1), and may cause violation of unitarity and perturbativity in a
given theory. Motivated by this, we study the construction of scheme trans-
formations that are applicable in the vicinity of a zero of the beta function
away from the origin [1, 2]. We construct and apply scheme transformations
at an infrared (IR) zero of the beta function, αIR,zero, in an vectorial, asymp-
totically free SU(N) gauge theory with Nf fermions in a representation R to
study the scheme dependence of αIR,zero. We show that the shift of αIR,zero
with increasing loop order tends to decrease, providing a quantitative mea-
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sure of the size of the scheme-dependence in the calculation of αIR,zero up to
four-loop order at not only small but also moderate coupling away from zero.

As the second part of the thesis work, we study the renormalization-group
evolution of aN = 1 supersymmetric SU(N) gauge theory by investigating β
functions in different schemes [3]. We take two particular schemes and com-
pute Padé approximants to probe the degree of similarity of the respective β
functions in these schemes.

Finally, we explore the renormalization-group evolution of the Gross-
Neveu model with N-component fermions by examining its β function up
to four-loop order [4]. As part of this study, we apply scheme transforma-
tions to this β function and also calculate and analyze Padé approximants
to the β function. From this analysis, we show that there is no evidence for
presence of an infrared zero in the finite-N Gross-Neveu model.
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3.4.2 Padé Approximants . . . . . . . . . . . . . . . . . . . . 76

4 Renormalization-Group Evolution of the Finite-N Gross-Neveu
Model 79
4.1 Some Relevant Background on the Gross-Neveu Model . . . . 80
4.2 Beta Function for General N . . . . . . . . . . . . . . . . . . . 82
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1 Introduction

In this dissertation, we will study some topics in quantum field theory (QFT),
including the dependence of a β function calculated to finite loop order, and
the corresponding renormalization-group flows of some models, on the scheme
used for regularization and renormalization. We will call this simply a scheme
in the following. The original research discussed in this thesis was performed
in collaboration with Prof. R. Shrock and published in the four papers [1]-
[4], the last of which also involved Prof. T. Ryttov (of Southern Denmark
University) as a coauthor. Early papers on the renormalization group (RG)
include [5]. The specific models we will go through for the study of these
topics are

• SU(Nc) gauge theory with Nf massless Dirac fermions

• N = 1 supersymmetric SU(Nc) gauge theory with Nf massless chiral
superfields

• Gross-Neveu model with finite N component massless fermions

These theories have the common feature of asymptotic freedom due to
the negativity of the one-loop β function for a range of the number of fermion
matter fields, Nf , that each theory has. Since we will be investigating the in-
frared behavior of these asymptotically free theories, our restriction to mass-
less fermions incurs no loss of generality. The reason for this is that if a
fermion had a nonzero mass m0, it would be integrated out of the effective
field theory at scales µ < m0, and hence would not affect the IR limit µ→ 0
considered here. As we will see later, a finite `-loop order β function with
` ≥ 3 depends on a choice of scheme used for regularization and renormal-
ization, and thus one may wonder how this fact affects physical observables
in perturbative QFT. To be specific, the possible questions that arise due to
subtlety lying behind renormalization scheme dependence could be

• How could one map coupling spaces of different schemes in a quantum
field theory?

• How much is a finite-loop calculation of a physical observable sensitive
to change of scheme?

• How is a renormalization-group flow of quantum field theory affected
by change of scheme?

1



We shall investigate these questions by the method of construction of various
scheme transformations and applying those to a physical observable of the
theories presented above, with reference to an infrared zero of the associ-
ated β functions. To this end, in this introduction section, we review the
basic procedure of regularization and renormalization and the way how one
defines a scheme in Sec.1.1 and Sec.1.2. Then in Sec.1.3, we briefly review
the β function of a non-Abelian gauge theory and define an infrared zero of
the β function. In addition, we study several possible infrared phases of an
asymptotically free theory, which depend on the value of the infrared zero of
β function. Finally in Sec.1.4, we study the basic formalism of scheme trans-
formations mapping coupling spaces of different renormalization schemes.

1.1 Regularization

In computing physical quantities within the framework of QFT, there arise
certain divergences, although we know the final answer for a physical quan-
tity must be finite. The expectation is that the divergences may occur in the
intermediate steps of the computation of physical observables. In the com-
putational procedure, it is necessary to isolate a meaningful finite part from
a divergent expression and the technique for the isolation is called regulariza-
tion. As an explicit example of regularization procedure, we illustrate here
the order O(g2) fermion loop correction to the gluon propagator in quantum
chromodynamics (QCD). Using the fermion propagator

Figure 1: The Feynman diagram for one-loop correction to the gluon propa-
gator. Curly external lines and solid internal lines correspond to gluon and
fermion, respectively.
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iδij
6 p+m

p2 −m2 + iε
(1)

and fermion-fermion-gauge vertex −igγµT aij with i and j color indices, one
can evaluate the Feynman diagram in Fig.1 and it reads

−iΠµν
ab (p2) = −g2Tr(TaTb)

∫ d4k

(2π)4
Tr[γµ(6 k +m)γν(6 k+ 6 p+m)]

(k2 −m2)([k + p]2 −m2)
(2)

where Ta is generator of the gauge group SU(3) and our metric is (+,−,−,−).
The denominator of the integrand can be expressed with the use of the iden-
tity

1

A ·B
=
∫ 1

0

dα

[A(1− α) +Bα]2
(3)

with A = k2 −m2 and B = [k + p]2 −m2. Then, one sees that −iΠµν
ab (p2)

contains term of the form∫ 1

0

∫ d4`

(2π)4
`ndα

(`2 −D)2
(n = 0 , 2) (4)

with ` ≡ k + αp and D ≡ m2 − α(1 − α)p2. Now by having spacetime
dimension analytically continued to D = 4 − 2ε dimension [6, 7, 8], we can
perform dimensional regularization of the momentum integral in Eq. (4) via

∫ dD`

(2π)D
`n

(`2 −D)2
=

Γ(−n+ ε)Γ(n+ 2− ε)
(4π)2−εΓ(2)Γ(2− ε)

Dn−ε (5)

where Γ(ε) is the Euler Gamma function given by

Γ(ε) =
Γ(1 + ε)

ε
=

1

ε
(1− εγE +O(ε2)) (6)

where γE = 0.57722... is the Euler-Mascheroni constant. In D spacetime di-
mensions, the Lagrangian density’s mass dimension becomes D and thus each
field’s mass dimension changes accordingly compared to 4 dimensional case.
Since the scalar, fermion and gluon field’s mass dimensions get converted to
1 − ε, (3/2) − ε and 1 − ε, respectively, one can deduce ε as the gauge cou-
pling’s mass dimension from the minimal coupling of the scalar and fermion
with the gluon field. Now we rewrite the gauge coupling g in terms of the
dimensionless renormalized gauge coupling g̃ and a new parameter µ which
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carries mass dimension of g. These are related by g = g̃µε. Note that µ is
not an actual parameter of the theory, and therefore we require that physical
observables are independent of µ.

Now relying on identities of gamma matrices and Eq. (5), one eventually
arrives at the following result,

−iΠµν
ab (p2) = i

g̃2

12π2
T(R)δab(p

µpν − gµνp2)(−1

ε
+ finite) (7)

where T(R) is Dynkin index of R-representation of the gauge group SU(N)
and the finite part in the parenthesis reads

finite = [γE − ln(4π) + ln(
−p2

µ2
)− 5

3
]− m2

p2
+O(

m6

p6
) +O(ε) (8)

Thus the divergent integral in Eq. (2) becomes separated into finite and
divergent parts.

1.2 Renormalization and its Scheme

In the procedure of renormalization, one writes a bare Lagrangian as a sum
of a renormalized Lagrangian and its corresponding counterterm, i.e.,

LB = LR + ∆L (9)

where ∆L is the counterterm Lagrangian. We use the subscripts B and R to
denote the bare and renormalized quantities, respectively. The switch from
the left hand side to the right hand side of Eq. (9) is achieved by relating
bare quantities to renormalized quantities via renormalization constants, Zi.
For instance, the bare gauge field AaµB is related to the renormalized gauge
field AaµR through AaµB =

√
Z3A

aµ
R where a is the gauge group generator index

and Z3 is the renormalization constant for the gauge field. In general, the
renormalization constants can be written as Zi = 1 + ∆Zi, which implies
that a bare quantity differs from its renormalized quantity by ∆Zi. Since
LR is completely expressed in terms of renormalized quantities, it should be
the case that ∆Zis appear in the counterterm Lagrangian ∆L. It is this ∆Zi
that incorporates the singularity structure of loop correction diagrams.

Now, having regularized the divergence(s), one still has the freedom to
define the finite part of ∆Zi with divergent part fixed and a choice of the finite
part defines a regularization and renormalization scheme. Some well-known
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examples of such schemes include the minimal subtraction scheme (MS) and
the modified minimal subtraction scheme (MS), which are characterized by
setting the finite part of ∆Zi to be 0 and γE − ln(4π), respectively [7, 8].
Apart from these examples, one can still choose another value of the finite
part and thus define a new renormalization scheme. Note, however, that
different renormalization schemes lead on to not only different finite part of
∆Zi, but the finite values of Feynman diagrams that we are left with after
renormalization.

To be more explicit, we can study the effect of renormalization on the
fermion one-loop correction to gauge field propagator in Eq. (7). After renor-
malization, Eq. (7) is converted into

−iΠµν
ab (p2) = i

g̃2

12π2
T(R) ln(

−p2

µ2eCRS
) (10)

where CRS varies according to what scheme is chosen for renormalization.
For exemplary schemes we mentioned above, the values of CRS are given by
CMS = −γE + ln(4π) + 5/3 and CMS = 5/3. We thus realize that renor-
malization scheme transformation can be easily carried out by rescaling the
parameter µ. In effect, the result we have in Eq. (10) contributes to the
renormalization constant of the gauge field, Z3, as manifested in renormal-
ization of the kinetic term of the gauge field. For further details of regular-
ization and renormalization procedure, we refer the reader to [9]. Although
we shall focus on asymptotically free theories in our work, we note that
studies of renormalization-group evolution have also been of interest in non-
asymptotically free theories, such as [10]-[16].

1.3 Beta Function of Non-Abelian Gauge Theory

In this section we discuss some relevant background of the beta function of
non-Abelian gauge theory and possible infrared behavior, relying on the beta
function at a finite loop order. We define

a ≡ g2

16π2
=

α

4π
. (11)

where g is the gauge coupling of the non-Abelian gauge theory of interest.
Because of loop effects such as the one illustrated in the previous section, the
coupling depends on the momentum scale at which it is measured. Formally,
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one may take this scale to be µ, although in a particular physical problem,
this will be related to the relevant physical momentum scale. The µ depen-
dence of α will often be left implicit in the notation. The beta function is
βg = dg/dt or equivalently,

βα ≡
dα

dt
, (12)

where dt = d lnµ. Thus, βα = [g/(2π)]βg. The function βα has the series
expansion

βα = −2α
∞∑
`=1

b` a
` = −2α

∞∑
`=1

b̄` α
` , (13)

where b` is the `-loop coefficient and b̄` = b`/(4π)`. The n-loop (n`) β
function, denoted βα,n`, is obtained from Eq. (13) by replacing the upper
limit on the `-loop summation by n instead of ∞. The coefficients b1 and b2
were calculated in [17],

b1 =
1

3
(11CA − 4TfNf ) , (14)

and [18]

b2 =
1

3
[34C2

A − 4(5CA + 3Cf )TfNf ] . (15)

Here, the group-theoretic quantities are defined as follows. Let T aR denote
the generators of the Lie algebra of a group G in the representation R, where
a is a group index, and let dR denote the dimension of R. The Casimir
invariants C2(R) is given by T aRT

a
R = C2(R)I, where here I is the dR × dR

identity matrix, and the trace invariant is given by TrR(T aRT
b
R) = T (R)δab.

For a fermion f transforming according to a representation R, we often use
the equivalent compact notation Tf ≡ T (R) and Cf ≡ C2(R). We also use
the notation CA ≡ C2(A) ≡ C2(G). Our normalization of generators is such
that CA = Nc for G = SU(Nc). Note that from Eq. (14), one sees that b1 > 0
holds provided Nf < 11CA/2Tf in which the theory is asymptotically free. It
is natural to work within a class of schemes where subtractions are performed
in the minimal manner as illustrated in the previous section, independent of
external masses and momenta. These schemes are called mass-independent
and include the MS and MS schemes, and others related to them via scheme
transformations. We shall do this in our analysis.

The coefficient b1 is scheme-independent, and b2 is also independent of
scheme within the class of mass-independent schemes [19]. In contrast,
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the coefficients b` with ` ≥ 3 are scheme-dependent [19]. This can be
proven by using scheme transformation formalism which will be discussed
in Sec.1.4. The widely applied modified minimal subtraction (MS) scheme
[8] uses dimensional regularization of Feynman integrals with minimal sub-
traction (MS) of the poles and associated constants at dimension d = 4 in
the resultant Euler Γ functions as discussed in Sec.1.2. Calculations of b3, b4
and b5 in the MS scheme were given in [20, 21, 22] for a non-Abelian gauge
theory for general gauge group G and fermion representation R. (For the
special case G = SU(3) and R = F , the fundamental representation, b5 was
calculated in [23].)

One of the advantages of the use of the β function is that it can give
some indication of what infrared phase a relevant theory would flow to as
one moves from high energy to a lower energy regime. Here we discuss some
possible infrared phases of the non-Abelian gauge theory with Nf fermions.
We start with the notion of infrared zero of a beta function defined to be the
coupling α in Eq. (11) satisfying

β(a) = −2α
∞∑
`=1

b`a
` = 0 . (16)

By replacing the upper limit∞ with n, we get the n-loop analong and denote
the IR zero of the n-loop beta function βα,n` as αIR,n` = 4πaIR,n`. Now, the
2-loop value of the infrared zero of the beta function is given by

αIR,2` = −4πb1
b2

. (17)

In order for a positive αIR,2` to exist in an asymptotically free theory (b1 > 0),
one need to require b2 < 0. Thus the number of the fermions in the theory
must lie in the interval

I : Nf,b2z < Nf < Nf,b1z . (18)

where Nf,b`z is the Nf with which b` vanishes.
As the first possibility of an infrared behavior of a non-Abelian gauge

theory, the theory might not have even αIR,2` due to b2 > 0 (Nf < Nf,b2z),
not to mention αIR,zero. In this case, as one moves toward low energy regime,
both the gauge coupling and the magnitude of the beta function value would
continue to increase, and eventually these would exceed the regime where

7



they can be reliably calculated perturbatively. For example, one may not
rely on perturbative computational method below the scale ΛQCD where
g(ΛQCD) ∼ 1 holds. QCD is one of the theories that belong to this class. We
illustrate this situation in Fig. 2.

Figure 2: The evolution of β function and gauge coupling of an asymptoti-
cally free non-Abelian gauge theory when the theory does not exhibit αIR,zero.
The arrow is along the direction of renormalization group evolution of the
theory of interest.

On the other hand, if there exists a real positive solution to Eq. (16), then
relative comparison between αIR,zero and αcr becomes important in the clas-
sification of the infrared behavior, where αcr is the coupling beyond which the
formation of bilinear fermion condensates takes place in the most attractive
channel, with attendant spontaneous chiral symmetry breaking and dynam-
ical generation of effective masses for the fermions involved. In the ladder
approximation to the Schwinger-Dyson equation for the fermion propagator,
this occurs as α increases through a value αcr given by [24] αcr = π/(3Cf ).
Given the intrinsic uncertainties involved in the strongly coupled physics of
fermion condensate formation, one may infer that the actual critical value
of α satisfies αcrCf ∼ O(1). If αIR exceeds αcr as the reference scale de-
creases below a scaled denoted Λ, then αcr is reached before αIR in the
renormalization-group evolution of the gauge coupling. Then, forming bi-
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linear condensates, fermions gain dynamical masses of order O(Λ). Thus,
the fermions are integrated out (Nf decreases) when the energy scale gets
below values of the masses and the β function of the theory in lower energy
regime than fermion masses becomes modified, so that the gauge coupling
increases further, eventually exceeding the perturbatively calculable regime.
Interestingly, however, if αIR,zero is just slightly greater than αcr, there is a
range of energy scale within which the gauge coupling rarely evolves and the
theory becomes quasi-scale invariant. This behavior is equivalently referred
to as being approximately dilatation-invariant. We illustrate this situation
in Fig.3. For this case, we call αIR the approximate infrared zero.

Figure 3: The evolution of β function and gauge coupling of an asymptot-
ically free non-Abelian gauge theory when αIR is just slightly greater than
αcr. The arrow is along the direction of renormalization group evolution of
the theory of interest.

For a given gauge group G and fermion representation R, we defines a
critical value, Nf,cr, that separates the two types of UV to IR evolution; for
Nf > Nf,cr, this evolution is to a massless non-Abelian Coulomb phase, while
for Nf < Nf,cr, it involves the above-mentioned chiral symmetry breaking.
These theories merit study because of their intrinsic field-theoretic interest,
and our work focuses mainly on formal aspects of the renormalization-group
behavior of these theories. However, it should be noted that they have been
of considerable phenomenological interest for a number of years as possible
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ultraviolet extensions of the Standard Model involving dynamical electroweak
symmetry breaking (EWSB) and a composite Higgs particle. In this applica-
tion, the fermions transform vectorially under the gauge group G, but have
transformation properties under the electroweak group such that the bilin-
ear fermion condensates that form at the scale Λ break electroweak symme-
try. These condensates transform in the same manner as a Higgs, namely
with weak isospin I = 1/2 and unit weak hypercharge. As a result of the
breaking of the associated global chiral symmetry, there arise three Nambu-
Goldstone bosons, which become the longitudinal modes of the W± and Z
vector bosons that mediate the charged-current and neutral-current weak
interactions. This fermion condensate formation also produces dynamical
masses for the fermions and therefore spontaneously breaks the approximate
dilatation invariance, giving rise to a light dilaton, which has properties sim-
ilar to those of the Standard-Model Higgs (e.g., [25]). Such theories have the
potential to solve the naturalness problem in the Higgs mass in the original
Standard Model because the small mass of the dilaton is protected, as an ap-
proximate Nambu-Goldstone boson. The quasi-scale-invariant behavior can
be built into a model by choosing a gauge group G, fermion representation R,
and value of Nf so that Nf is slightly smaller than Nf,cr, where Nf,cr is such
that if Nf < Nf,cr, then the gauge interaction produces a fermion condensate
and confines in the IR, while if Nf > Nf,cr, then there is no fermion con-
densate formation or associated spontaneous chiral symmetry breaking and
the theory evolves in the infrared to a (deconfined) non-Abelian Coulomb
phase. Extensive lattice studies of quasi-scale-invariant theories have been
undertaken over the past ten years, both because of their possible role in
physics beyond the Standard Model with dynamical EWSB and a composite
Higgs, and because of their intrinsic theoretical interest [26, 27]. These have
demonstrated the appearance of a light scalar particle in quasi-scale-invariant
theories, consistent with being the dilaton. So far, the production and decays
of the Higgs particle at the CERN Large Hadron Collider (LHC) are consis-
tent with the predictions of the Standard Model. The question of whether or
not it is composite, or is truly pointlike, as predicted by the Standard Model,
will continue to be a major goal of experimental study at the LHC. Thus,
time will tell whether quasi-scale-invariant theories are realized as part of
physics beyond the Standard Model. However, such theories are of definite
theoretical interest because of their unusual renormalization-group behavior.
As will be discussed below, our thesis research on scheme transformations is
quite useful in the analysis of these theories, since it provides a quantitative
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measure of the degree of scheme dependence in higher-loop-order perturba-
tive calculations. Indeed, this is analogous to the value of studying scheme
dependence in higher-order perturbative QCD calculations relevant for the
analysis of experimental data at the Fermilab Tevatron and CERN LHC. The
difference is that in our case, we are investigating behavior in the vicinity of
an approximate infrared fixed point of the renormalization group, while in
the case of QCD, the investigations study the behavior at high momentum
transfers in the vicinity of the ultraviolet fixed point at the origin in coupling
space. As we will show, scheme transformations that work well near α = 0
and hence in the deep UV, may not be applicable at an infrared fixed point
located away from the origin.

Lastly, if there exists a real positive solution to Eq. (16) and αIR,zero < αcr
holds, then the theory has the exact infrared zero of β function. In contrast
to the previous case, now αIR is reached before αcr in the renormalization-
group evolution of the gauge coupling. This implies that the β function
evolves from zero to zero and the coupling increases and eventually evolves
to αIR in renormalization group evolution from ultraviolet (UV) to infrared
(IR) regime. Then in the IR limit, the theory has an exact scale invariance
and the value of β function approaches zero. In this sense, we call αIR,zero
an infrared fixed point (IRFP) and denote it as αIRFP . Here, the UV to IR
evolution of the theory leads to a deconfined non-Abelian Coulomb Phase
without any spontaneous chiral symmetry breaking [28, 29]. We illustrate
this situation in Fig.4.

In this discussion about infrared phase of the theory and IR zero, we have
not specified a loop order at which we evaluate the IR zero. Thus one may
wonder whether higher loop corrections to IR zero are large enough to change
the renormalization group evolution of the theory. This was investigated in
[30]-[35]. We discuss the comparison of αIR,2`, αIR,3` and αIR,4` in the MS
scheme. For fermions in the fundamental representation, it was found that, in
the MS scheme, relative to the (scheme-independent) two-loop value, αIR,2`
.

αIR,3`,MS < αIR,4`,MS < αIR,2` . (19)

The shifts in the value of the IR zero with ascending loop order were found
to become smaller as Nf approaches Nf,b1z. Comparisons were made with
the extensive lattice studies of this physics for various gauge groups and
fermion representations [26]. Because the coefficients b` for ` ≥ 3 are scheme-
dependent, these higher-loop calculations naturally led to studies of scheme-
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Figure 4: The evolution of β function and gauge coupling of an asymptoti-
cally free non-Abelian gauge theory when there exists an exact infrared fixed
point with αIR < αcr. The arrow is along the direction of renormalization
group evolution of the theory of interest. In the left panel, the red circular
point on α axis represents IR zero of the theory of interest and it is smaller
than αcr in this case.

dependence in [36]-[41]. A different approach to study an IR fixed point of
an asymptotically free theory [28] that has been pursued in [42]-[47] is to
calculate scheme-independent series expansions for physical quantities. In
addition to this thesis research, the author is also carrying out research in
cosmology in collaboration with Prof. M. Loverde and Dr. Chi-Ting Chiang
[48].

1.4 Scheme Transformations

Having reviewed relevant background in previous sections, we now begin
to describe the original research carried out by the author in collaboration
with Prof. Shrock, which comprises the author’s Ph.D. thesis work and was
published in the four papers [1]-[4], the last of which also coauthored with
Prof. T. Ryttov.

A scheme transformation can be expressed as a mapping between α and
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α′ or equivalently, between a and a′, namely

a = a′f(a′) = F (a′) . (20)

In the limit where a and a′ vanish, the theory becomes free, so a scheme
transformation has no effect. This implies the condition

f(0) = 1 . (21)

The functions f(a′) that we consider have Taylor series expansions about
a = a′ = 0 of the form

f(a′) = 1 +
smax∑
s=1

ks(a
′)s (22)

where the ks are constants, and smax may be finite or infinite. Thus, these
functions f(a′) automatically satisfy the condition (21). Equivalently,

F (a′) = a′ +
smax∑
s=1

ks(a
′)s+1 . (23)

A number of the scheme transformations studied in [1, 36, 37, 38, 39] de-
pend on a parameter (denoted r in these works) and hence are actually
one-parameter families of scheme transformations. Here and below, we shall
often refer to a one-parameter family of scheme transformations as a single
scheme transformation, with the dependence on the parameter r taken to be
implicit. In accordance with the series expansion (23), F (a′) has the property

F ′(0) ≡ dF (a′)

da′

∣∣∣
a′=0

= 1 . (24)

(No confusion should result from the prime used here for differentiation and
the prime on a′, which does not indicate any differentiation but just distin-
guishes a′ from a.) For the relevant region of small a (and hence also small a′)
where the perturbative beta function is applicable, we mention the following
general result. Let us denote the lowest-order nonzero coefficient ks in Eq.
(22) as ksmin

. Then for small a (and hence a′),

ksmin
> 0 =⇒ a > a′ ,

ksmin
< 0 =⇒ a < a′ . (25)
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Given the form (22), it follows that the Jacobian

J =
da

da′
=
dα

dα′
(26)

has the series expansion

J = 1 +
smax∑
s=1

(s+ 1)ks(a
′)s (27)

and thus satisfies
J = 1 at a = a′ = 0 . (28)

The beta function in the transformed scheme is

βα′ ≡ dα′

dt
=
dα′

dα

dα

dt
= J−1 βα . (29)

with the series expansion

βα′ = −2α′
∞∑
`=1

b′`(a
′)` = −2α′

∞∑
`=1

b̄′`(α
′)` , (30)

where b̄′` = b′`/(4π)`. Since Eqs. (29) and (30) define the same function, one
can solve for the b′` in terms of the b` and ks. This yields the results b′1 = b1
and b′2 = b2. In [36, 37], explicit expressions were calculated for higher-loop
b′` with ` ≥ 3 in terms of the b` and ks. In general, it was shown that the
coefficient b′` with ` ≥ 3 in the transformed scheme is a linear combination of
bn with 1 ≤ n ≤ ` with coefficients that are algebraic functions of the various
ks. We present expressions of b′` for ` = 3, 4 and 5 below, from [36]:

b′3 = b3 + k1b2 + (k21 − k2)b1 , (31)

b′4 = b4 + 2k1b3 + k21b2 + (−2k31 + 4k1k2 − 2k3)b1 . (32)

b′5 = b5 + 3k1b4 + (2k21 + k2)b3 + (−k31 + 3k1k2 − k3)b2
+ (4k41 − 11k21k2 + 6k1k3 + 4k22 − 3k4)b1 . (33)

Given that the b` for ` ≥ 3 are scheme-dependent, one may ask whether it
is possible to transform to a scheme in which the b′` are all zero for ` ≥ 3, i.e., a
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scheme in which the two-loop β function is exact. Near the UV fixed point at
α = 0, this is possible, as emphasized by ’t Hooft [49]. The resultant scheme,
in which the beta function truncates at two-loop order is commonly called
the ’t Hooft scheme. Ref. [37] presented an explicit scheme transformation
which, starting from an arbitrary scheme, transforms to the ’t Hooft scheme.
This necessarily has smax = ∞. However, Refs. [37, 38] also noted that
although this scheme transformation is acceptable in the vicinity of a zero
of the beta function at α = 0 (UV zero for an asymptotically free theory
or IR zero for an infrared-free theory), it cannot, in general, be applied
to a generic zero of the beta function (IR zero of an asymptotically free
theory or UV zero of an infrared-free theory) away from α = 0. Ref. [39]
constructed and studied a one-parameter class of scheme transformations,
denoted SR,m,k1 having smax = m ≥ 2, with the property that an SR,m,k1
scheme transformation eliminates the `-loop terms in the beta function of a
gauge theory from loop order ` = 3 to order ` = m + 1, inclusive. In Ref.
[39], scheme transformations in this SR,m,k1 family were applied to the higher-
loop calculation of the infrared zero of the beta function of an asymptotically
free gauge theory with multiple fermions and it was shown that they were
acceptable over a reasonably large range of couplings.

In order to be physically acceptable, a scheme transformation must satisfy
several conditions Ci, as was discussed in [37]. These are as follows:

1. C1: the scheme transformation must map a real positive α to a real
positive α′.

2. C2: the scheme transformation should not map a moderate value of α,
for which perturbation theory may be reliable, to a value of α′ that is
so large that perturbation theory is unreliable, or vice versa.

3. C3: the Jacobian J should not vanish (or diverge) or else the transfor-
mation would be singular. Since J = 1 for a = a′ = 0, a corollary of
condition C3 is that J must be positive.

4. C4: since the existence of an IR zero of β is a scheme-independent
property of theory, a scheme transformation must satisfy the condition
that βα has an IR zero if and only if βα′ has an IR zero.

Since one can define a transformation from α to α′ and the inverse from α′

to α, these conditions apply going in both directions. These four conditions
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can always be satisfied by scheme transformations used to study the UV fixed
point in an asymptotically free theory. However, as was pointed out in [36]
and shown with a number of examples in [36]-[39], they are not automatically
satisfied, and indeed, are quite restrictive conditions when one applies the
scheme transformation at a zero of the beta function away from the origin,
α = 0, i.e., at an IR zero of the beta function for an asymptotically free
theory or a UV zero of the beta function for an infrared-free theory. For
example, recall the scheme transformation denoted Sthr [36, 37], defined by

a =
1

r
tanh(ra′) , (34)

depending on a parameter r. Since this transformation is an even function of
r, one may take r ≥ 0 without loss of generality. The Sthr transformation is
well-behaved near the UVFP at a = a′ = 0 in an asymptotically free theory,
but is not acceptable at a generic IR zero of the beta function. The reason
is evident from its inverse,

a′ =
1

2r
ln
[

1 + ra

1− ra

]
(35)

As ra approaches 1 from below, a′ → ∞, and for ra > 1, a′ is complex.
Hence, this transformation violates conditions C1, C2, and C4. For example,
for r = 4π, this scheme transformation is

α = tanhα′ (36)

and the inverse is

α′ =
1

2
ln
[

1 + α

1− α

]
(37)

with the pathologies occurring as α approaches 1 from below. For r = 8π, the
pathologies occur as α approaches the value 0.5 from below. As this example
and the others analyzed in [36]-[39] show, the construction and application of
a physically acceptable scheme transformation at a zero of the beta function
away from the origin is considerably more difficult than at a zero of the beta
function at the origin, as in scheme transformations used in QCD [50, 52, 54].

In the following, to avoid overly complicated notation, we will use the
generic notation α′ for the result of the application of each scheme transfor-
mation to an initial α, with it being understood that this refers to the specific
transformation under consideration. Where it is necessary for clarification,
we will use a subscript to identify the specific scheme S being discussed.
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2 Construction and Application of Renormal-

ization Scheme Transformation

In this section, we shall carry out explicit construction of renormalization
scheme transformations that satisfy the four necessary conditions presented
in Sec.1.4. Furthermore, taking the MS scheme as our initial scheme, we
shall apply some of the scheme transformations we construct in this section
to compute αIR,zero,n` (2 ≤ ` ≤ 4) in another schemes. As a result of this
application, we will be able to measure the scheme dependence of an infrared
zero of the β function in a quantitative manner. Our original research in this
area has been published in collaboration with Prof. R. Shrock in the two
papers [1, 2]. Related papers include [36]-[39].

As noted, Refs.[36, 37] observed that it is significantly more difficult to
construct scheme transformations that can be applied away from the origin in
coupling-constant space than it is to construct such transformations that are
applicable in the vicinity of the origin (such as those used QCD calculations
in the perturbative region, i.e., for small αs). An example of this was given
by the scheme transformation (34) above. This is well-behaved near zero
coupling, α = α′ = 0, where it approaches the identity transformation, but
is unacceptable at a generic zero of the beta function. This is clear from the
inverse transformation (35), which has a singularity as ra approaches 1 from
below, i.e., as α approaches 4π/r from below, and yields a complex α′ for
ra > 1, i.e., for α > 4π/r. For the illustrative value r = 8π, this unphysical
behavior occurs at α = 0.5. In other words, even though one might succeed
in designing a scheme transformation that works very well for coupling near
zero by satisfying the necessary four conditions presented in Sec.1.4, this does
not guarantee the scheme transformation’s validity for coupling away from
the origin, which makes construction of the latter much more challenging and
restrictive.

In this context, our construction and application of scheme transforma-
tions in this section are aimed at such scheme transformations that are ap-
plicable not only near the origin of coupling space, but also at a zero of β
function away from the origin. We succeeded in devising this sort of scheme
transformation in the papers [1, 2]. Let us consider a well-behaved (family
of) scheme transformation(s) Sr where in this paragraph, r symbolizes a set
of one or more parameters, such that S0 is the identity. Since we are go-
ing to apply the scheme transformations to calculation of infrared zeros of β
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function, it is worthwhile to make some remarks on the comparison between
αIR,n`,S{r} and αIR,n`,MS. It follows that if one applies the transformation Sr
to the MS scheme, then, for a given loop order n,

lim
r→0

α′IR,n`,Sr
= αIR,n`,MS . (38)

Furthermore, since the IR zero in βα approaches zero as Nf approaches Nf,b1z

from below, one has the formal result that, with Nf extended from a non-
negative integer variable to a nonnegative real variable,

lim
Nf↗Nf,b1z

αIR,n`,Sr = lim
Nf↗Nf,b1z

αIR,n`,MS = 0 . (39)

Moreover, if the set of parameters {r} specifying a general scheme transfor-
mation is such that this transformation is sufficiently close to the identity,
then it preserves the relative order of the values of the IR zeros of the n-loop
beta function. We recall that for fermions in the fundamental representa-
tion, in the MS scheme, the three-loop and four-loop values of the IR zero,
αIR,3`,MS and αIR,4`,MS, are in the order, relative to the (scheme-independent)
two-loop value, αIR,2`, given by Eq. (19).

In Sec.2.1, we construct and study scheme transformation denoted SLr

which makes use of a logarithmic f(a′). In Sec.2.2, we construct and study
a scheme transformation denoted SQr based on a rational type of function
f(a′). Finally, in Sec.2.3, we introduce an integral formalism for constructing
scheme transformations. This method has some convenient features, as we
will describe.

2.1 The SLr Scheme Transformation

Here we introduce and study a scheme transformation, denoted SLr , where
L stands for logarithm and r for the parameter on which a transformation
in this family depends [1]. This is thus actually a one-parameter family of
scheme transformations. We show that the SLr scheme transformation satis-
fies the necessary conditions to be acceptable at a zero of the beta function
away from the origin, for a reasonable range of |r|, and we then apply it to
the calculation, at higher-loop order, of an IR zero of the beta function for
an asymptotically free non-Abelian gauge theory. This calculation provides
a measure of the scheme dependence of the value of this IR zero.
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The SLr scheme transformation is defined as

SLr : a =
ln(1 + ra′)

r
, (40)

where r is a (real) parameter. Writing Eq. (40) in the form of Eq. (20), the
transformation function is

SLr : f(a′) =
ln(1 + ra′)

ra′
. (41)

This transformation function satisfies

lim
a′→0

f(a′) = 1 , (42)

in accordance with the requirement that f(0) = 1. Note also that

lim
r→0

f(a′) = 1 , (43)

where the limit may be taken through either positive or negative values of r.
The scheme transformation (40) has the inverse

a′ =
era − 1

r
. (44)

The Jacobian J = da/da′ is

J =
1

1 + ra′
= e−ra . (45)

This Jacobian always satisfies condition C3. The transformation function
f(a′) has the Taylor series expansion

f(a′) = 1 +
∞∑
s=1

(−ra′)s

s+ 1
, (46)

so, in the notation of Eq. (22), the expansion coefficients are

ks =
(−r)s

s+ 1
. (47)

Thus, for small |r|a′,

a = a′
[

1− ra′

2
+O

(
(ra′)2

) ]
. (48)
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It follows that with the application of the SLr scheme transformation,

SLr : a′ > a if r > 0

a′ < a if r < 0. (49)

The requirement that the right-hand side of Eq. (40) must be real implies
that the argument of the log must be positive, which, in turn, yields the
formal lower bound on this parameter

r > − 1

a′
. (50)

This is also required by the condition C3, that the Jacobian must be (finite
and) positive. If r > 0, this inequality is obviously satisfied, since a and a′

are positive. Let us then consider negative r. Substituting Eq. (44), the
inequality (50) becomes r > r/(1− era). Since we have restricted to negative
r, this can be rewritten as −|r| > −|r|/(1 − e−|r|a), i.e., 1 < 1/(1 − e−|r|a),
which is always satisfied. Thus, r may be positive or negative, and the actual
range of r is determined by the conditions C1 and C2, that given a value of
α = 4πa for which perturbative calculations are reasonably reliable, the same
should be true of α′ = 4πa′. This will be discussed further below.

Substituting the result (47) for ks into the general expressions for the b′`
from [37], we obtain

b′3 = b3 −
r

2
b2 −

r2

12
b1 , (51)

b′4 = b4 − rb3 +
r2

4
b2 +

r3

12
b1 , (52)

b′5 = b5 −
3r

4
b4 +

5r2

6
b3 −

r3

8
b2 −

13r4

180
b1 , (53)

b′6 = b6 − 2rb5 +
5r2

3
b4 −

2r3

3
b3 +

7r4

120
b2 +

11r5

180
b1 , (54)

and so forth for the b′` with ` ≥ 7.
We next apply this SLr scheme transformation to the β function in the

MS scheme. For Nf ∈ I, so the two-loop β function has an IR zero, we then
calculate the resultant IR zero in βα′ at the three- and four-loop order. We
have carried out these calculations with a range of values of N and r. For
Nf ∈ I and various values of r we list the results for G = SU(3) in Table 1
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for the zero of the three-loop beta function and in Table 2 for the zero of the
four-loop beta function. We denote the IR zero of βα′ at the n-loop level as
α′IR,n` ≡ α′IR,n`,SLr

, and, to save space in the tables we further shorten this to
α′IR,n`,r. Here and below, for this SU(3) theory, the lower end of the interval
I, namely N = Nf,b2z, is at N = 8.05 [51], so, for physical, integral values of
Nf , it is Nf = 9. The lowest value we show in Table 1 and the later tables is
Nf = 10, because for Nf = 9, αIR,2` is too large for the perturbative methods
that we use to be reliable. Our results for N = 2, 4, and other values are
similar, so the N = 3, i.e., SU(3) results displayed in Tables 1 and 2 will
be sufficient for our discussion here. The range of r for which we list results
in these tables is −3 ≤ r ≤ 3. This range evidently satisfies the conditions
C1-C4. However, if one were to increase the magnitude of |r| to excessively
large values, with either sign of r, this scheme transformation would violate
conditions C1 and C2. For the SU(3) theory, taking the value Nf = 12 for
illustration, as one increases r beyond the upper end of the range that we
show, for the values r = 4, 5, 6, 7, one gets the four-loop result αIR,4`,SLr

equal to 0.529, 0.550, 0.578, 0.618. However, for r = 8, the transformation
yields a complex, unphysical result for αIR,4`,SLr

. Similarly, for this Nf = 12
case, as one decreases r below the lowest negative value, r = −3, the solution
for αIR,4`,SLr

decreases smoothly to 0.390 at r = −10, but becomes complex
for r = −11. The resultant restriction on the range of the parameter r is
generic. That is, as was discussed before in [36]-[39], in applying scheme
transformations, one must necessarily restrict the form of the transformation
so as to satisfy the conditions C1-C4.

We also observe the following additional general properties in our calcu-
lations of α′IR,n`,SLr

. First, it follows from

lim
r→0

α′IR,n`,Sr
= αIR,n`,MS . (55)

together with the fact that Eq. (40) is a continuous transformation, that
for small |r|, the relative order of the values of the n-loop IR zeros of βα′ in
the transformed scheme are the same as those in the original MS scheme, as
given in (19). This is evident from the illustrative N = 3 results given in
Tables 1 and 2. In accord with (39), the shifts of the value of the IR zero
as a function of loop order are larger for smaller Nf and get smaller as Nf

approaches Nf,b1z.
Second, for a given N , Nf ∈ I, loop order n = 3 or n = 4, and r values
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Table 1: Values of the IR zero, α′
IR,3`,SLr

, of the three-loop beta function βα′,3` obtained

by applying the SLr
scheme transformation to the three-loop beta function in the MS

scheme, for an SU(3) gauge theory with Nf fermions in the fundamental representation.
For compact notation, we set α′

IR,3`,SLr
≡ α′

IR,3`,r in the table. For each Nf , we list
these values as a function of r for r from r = −3 to r = 3 in steps of 1. For r = 0,
α′
IR,3`,SLr

= αIR,3`,MS. For reference, we also list the (scheme-independent) IR zero of
the beta function, αIR,2`.

Nf αIR,2` α′IR,3`,r=−3 α′IR,3`,r=−2 α′IR,3`,r=−1 αIR,3`,MS α′IR,3`,r=1 α′IR,3`,r=2 α′IR,3`,r=3

10 2.21 0.749 0.754 0.759 0.764 0.769 0.774 0.778
11 1.23 0.566 0.570 0.574 0.578 0.583 0.587 0.591
12 0.754 0.426 0.429 0.432 0.435 0.438 0.441 0.444
13 0.468 0.311 0.313 0.315 0.317 0.319 0.321 0.323
14 0.278 0.211 0.212 0.213 0.2145 0.216 0.217 0.218
15 0.143 0.122 0.122 0.123 0.123 0.124 0.124 0.125
16 0.0416 0.0396 0.0396 0.0397 0.0397 0.0398 0.0398 0.0399

for which the SLr transformation satisfies the conditions C1-C4,

α′IR,n`,SLr
is an increasing function of r. (56)

This second property, in conjunction with the general property (55), implies
that, for a given N , Nf ∈ I, and r,

α′IR,n`,SLr
> αIR,n`,MS if r > 0 and

α′IR,n`,SLr
< αIR,n`,MS if r < 0 . (57)

This holds for arbitrary loop order n and, in particular, for the loop orders
n = 3 and n = 4 for which we have done calculations using the known MS
beta function coefficients. The result (57) is evident in the illustrative N = 3
results given in Tables 1 and 2. In accord with (39), the shifts of the value of
the IR zero as a function of |r| become quite small as Nf approaches Nf,b1z

from below. In this region, these shifts in the position of the IR zero of the
`-loop beta function in the transformed scheme can be sufficiently small that
the entries may coincide to the given number of significant figures displayed
in the tables.
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Table 2: Values of the IR zero, α′
IR,4`,SLr

, of the four-loop beta function βα′,4` obtained

by applying the SLr
scheme transformation to the four-loop beta function in the MS

scheme, for an SU(3) gauge theory with Nf fermions in the fundamental representation.
For compact notation, we set α′

IR,4`,SLr
≡ α′

IR,4`,r in the table. For each Nf , we list
these values as a function of r for r from r = −3 to r = 3 in steps of 1. For r = 0,
α′
IR,4`,SLr

= αIR,4`,MS. For reference, we also list the (scheme-independent) IR zero of
the beta function, αIR,2` and αIR,3`,MS.

Nf αIR,2` αIR,3`,MS α′IR,4`,r=−3 α′IR,4`,r=−2 α′IR,4`,r=−1 αIR,4`,MS α′IR,4`,r=1 α′IR,4`,r=2 α′IR,4`,r=3

10 2.21 0.764 0.734 0.760 0.785 0.815 0.851 0.895 0.956
11 1.23 0.578 0.576 0.591 0.607 0.626 0.648 0.673 0.705
12 0.754 0.435 0.441 0.450 0.460 0.470 0.482 0.496 0.511
13 0.468 0.317 0.322 0.327 0.332 0.337 0.343 0.349 0.356
14 0.278 0.2145 0.217 0.219 0.221 0.224 0.226 0.228 0.231
15 0.143 0.123 0.124 0.124 0.125 0.126 0.126 0.127 0.128
16 0.0416 0.0397 0.0396 0.0397 0.0398 0.0398 0.0399 0.0400 0.0400

2.2 The Rational Scheme Transformation S[p,q]

Here we discuss the construction and study of scheme transformations for
which the function f(a′) a rational function of a′, i.e.,

a = a′f(a′)[p,q] (58)

where

S[p,q] : f(a′)[p,q] =
N(a′)

D(a′)
, (59)

where the numerator and denominator functions N(a′) and D(a′) are poly-
nomials of respective finite degrees p and q in a′:

N(a′) =
p∑
i=0

ui (a
′)i with u0 = 1 (60)

and

D(a′) =
q∑
j=0

vj (a′)j with v0 = 1 . (61)

This discussion follows Ref. [1]. The restrictions that u0 = v0 = 1 are
imposed so that f(a′) satisfies the necessary condition that f(0) = 1. Thus,
a general S[p,q] scheme transformation depends on the p + q parameters ui,

23



i = 1, ..., p and vj, j = 1, ..., q. As indicated, we label this class of scheme
transformations as S[p,q], with the dependence on the coefficients ui and vj
kept implicit. If q = 0, then this gives a Taylor series expansion (22) with
smax = p, while if q ≥ 1, then smax =∞.

We note that, as one may recall from the theory of Padé approximants, for
a given series expansion (22) calculated to a given finite order sh, it is possible
to construct a set of rational functions f(a′) of the form (59) whose Taylor
series expansion coefficients match the given set ks, s = 1, ..., sh. Viewed the
other way, if one starts with a set of rational functions of the form (59), one
knows that certain subsets of these can be chosen to yield the same Taylor
series expansion to a given order sh.

The scheme transformation function S[p,q] introduces p zeros and q poles,
so a necessary requirement is that one must choose the coefficients ui with
i = 1, ..., p and vj with j = 1, ..., q such that the zeros and poles occur away
from the relevant physical region in a. Obviously, scheme transformations
with polynomial transformation functions f(a′) are special cases of S[p,q] with
q = 0. Thus, the scheme transformation S1 studied in [36, 37] and [39] is a
special case of S[p,q] with p = 1 and q = 0; the S2 and S3 transformations
in [36, 37, 38] are special cases of S[p,q] with p = 2 and q = 0, and the SR,m
and SR,m,k1 transformations studied in [38, 39] are special cases of S[p,q] with
p = m and q = 0. We proceed in the next section to study the simplest
member of the class of S[p,q] scheme transformations with q 6= 0, namely one
with p = 0 and q = 1.

2.2.1 The SQr Scheme Transformation

In this section we introduce and apply a scheme transformation that we call
SQr , defined as S[p,q] with p = 0 and q = 1,

SQr ≡ S[0,1] with v1 = −r . (62)

Thus, explicitly,

SQr : a =
a′

1− ra′
, (63)

where r is a (real) parameter, whose allowed range will be determined below.
As before, we show this satisfies the necessary conditions to be acceptable at
a zero of the beta function away from the origin for a reasonable range of |r|,
and we then apply it to assess the scheme dependence of the IR zero in the
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beta function of an asymptotically free non-Abelian gauge theory at higher
loop order. The transformation function corresponding to (63) is

SQr : f(a′) =
1

1− ra′
. (64)

Clearly, f(a′) = 1 for a′ = 0 and separately for r = 0. The inverse of Eq.
(63) is

a′ =
a

1 + ra
. (65)

The Jacobian J = da/da′ is

J =
1

(1− ra′)2
= (1 + ra)2 . (66)

The transformation function has the Taylor series expansion

f(a′) = 1 +
∞∑
s=1

(ra′)s , (67)

so, in the notation of Eq. (22), the expansion coefficients are

ks = rs . (68)

Thus, for small |r|a′,

a = a′
[

1 + ra′ +O
(
(ra′)2

) ]
. (69)

It follows that after application of the SQr scheme transformation,

SQr : a′ < a if r > 0

a′ > a if r < 0 . (70)

The condition C1 requires that the denominator of the right-hand side of
Eqs. (65) be finite and positive, which implies that the (real) parameter r is
bounded below according to

r > −1

a
. (71)

Clearly, in order for conditions C1 and C2 to be satisfied, r cannot be too
close to saturating this lower bound. These conditions applied to the original
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transformation (63) yield the formal inequality r < 1/a′. However, substitut-
ing (65), this becomes r < a−1 + r, which is always valid, since a > 0. Thus,
the actual upper bound on r is determined by the conditions C1 and C2,
that, given a value of α for which perturbative calculations are reasonably
reliable, the same should be true of α′.

Inserting the result (68) for ks into the general expressions for the b′` from
[37], we obtain

b′3 = b3 + rb2 , (72)

b′4 = b4 + 2rb3 + r2b2 , (73)

b′5 = b5 + 3rb4 + 3r2b3 + r4b2 , (74)

b′6 = b6 + 4rb5 + 6r2b4 + 4r3b3 + r4b2 , (75)

and so forth for the b′` with ` ≥ 7. A general property of these beta function
coefficients resulting from the application of the SQr scheme transformation
to an arbitrary initial scheme is that

SQr : b′` is independent of b1 for ` ≥ 3 . (76)

The reason for this can be seen as follows. The coefficient b′` with ` ≥ 3
resulting from the application of a scheme transformation is a linear combi-
nation of the bn with 1 ≤ n ≤ `. The structure of the coefficients multiplying
these bn, 1 ≤ n ≤ ` was discussed in [36, 37]. In particular, the respective
coefficients of b1 in the expressions for b′` with ` ≥ 3 have the property that
they vanish if ks = (k1)

s. This property is satisfied by the present SQr scheme
transformation, as is evident from Eq. (68). For example, in the expression
(31) for b′3, the coefficient of b1 is k21−k2, and in Eq. (32) for b′4, the coefficient
of b1 is −2k31 + 4k1k2 − 2k3, which vanish if ks = (k1)

s. Similar results hold
for the b′` with higher values of ` that were calculated in [36]-[38].

We next apply this SQr scheme transformation to the β function in the MS
scheme. We present results in Table 3 for the three-loop calculation and Table
4 for the four-loop calculation. The range of r that we use is −3 ≤ r ≤ 3. For
the lowest two values of Nf , namely Nf = 10 and Nf = 11, and the lowest
values of r, namely r = −3, although the SQ,r scheme transformations yields
acceptable values of the three-loop zero, α′IR,3`,SQr

, it yields complex values
of the four-loop zero, α′IR,4`,SQr

. To avoid these, one may restrict the lower
range of r to, e.g., r = −2. The SQr transformation obeys the conditions C1

and C2 for values of r somewhat beyond the upper end of the range that we
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Table 3: Values of the IR zero, α′
IR,3`,SQr

, of the three-loop beta function βα′,3` obtained

by applying the SQr
scheme transformation to the three-loop beta function in the MS

scheme, for an SU(3) gauge theory with Nf fermions in the fundamental representation.
For compact notation, we set α′

IR,3`,SQr
≡ α′

IR,3`,r in the table. For each Nf , we list
these values as a function of r for r from r = −3 to r = 3 in steps of 1. For r = 0,
α′
IR,3`,SQr

= αIR,3`,MS. For reference, we also list the (scheme-independent) IR zero of
the beta function, αIR,2`.

Nf αIR,2` α′IR,3`,r=−3 α′IR,3`,r=−2 α′IR,3`,r=−1 αIR,3`,MS α′IR,3`,r=1 α′IR,3`,r=2 α′IR,3`,r=3

10 2.21 0.795 0.785 0.774 0.764 0.755 0.746 0.737
11 1.23 0.605 0.596 0.587 0.5785 0.571 0.563 0.556
12 0.754 0.455 0.448 0.441 0.435 0.429 0.423 0.418
13 0.468 0.330 0.325 0.321 0.317 0.313 0.309 0.305
14 0.278 0.222 0.219 0.217 0.215 0.212 0.210 0.208
15 0.143 0.126 0.125 0.124 0.123 0.122 0.122 0.121
16 0.0416 0.0401 0.0400 0.0398 0.0397 0.0396 0.0395 0.0394

show, but eventually, if one were to use excessively large values of r, it would
again fail to satisfy these.

We remark on some general features of the SQr scheme transformation.
As with the SLr transformation, it follows from (55) together with the fact
that Eq. (63) is a continuous transformation, that for small |r|, the relative
order of the values of the n-loop IR zeros of βα′ in the transformed scheme
are the same as those in the original MS scheme, as given in (19). This is
evident in Table 3 and from Table 4. Second, for a given N , Nf ∈ I, and r,
we find

α′IR,n`,SQr
< αIR,n`,MS if r > 0 and

α′IR,n`,SQr
> αIR,n`,MS if r < 0 for n = 3, 4 . (77)

Third, for a given N , Nf ∈ I, and loop order n = 3 or n = 4,

α′IR,n`,SQr
is a decreasing function of r. (78)

2.2.2 S[1,1] Scheme Transformation

In this section we remark on some other S[p,q] scheme transformations with
q 6= 0. We begin with S[1,1], This is defined by the p = q = 1 special case of
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Table 4: Values of the IR zero, α′
IR,4`,SQr

, of the four-loop beta function βα′,4` obtained

by applying the SQr
scheme transformation to the four-loop beta function in the MS

scheme, for an SU(3) gauge theory with Nf fermions in the fundamental representation.
For compact notation, we set α′

IR,4`,SQr
≡ α′

IR,4`,r in the table. For each Nf , we list
these values as a function of r for r from r = −3 to r = 3 in steps of 1. For r = 0,
α′
IR,4`,SQr

= αIR,4`,MS. For reference, we also list the (scheme-independent) IR zero of
the beta function, αIR,2` and αIR,3`,MS. The notation − means that the transformation

yields an unphysical (here, complex) value for α′
IR,4`,SQr

.

Nf αIR,2` αIR,3`,MS α′IR,4`,r=−3 α′IR,4`,r=−2 α′IR,4`,r=−1 αIR,4`,MS α′IR,4`,r=1 α′IR,4`,r=2 α′IR,4`,r=3

10 2.21 0.764 − 1.062 0.896 0.815 0.760 0.719 0.685
11 1.23 0.578 − 0.750 0.674 0.626 0.591 0.563 0.540
12 0.754 0.435 0.581 0.530 0.496 0.470 0.450 0.433 0.418
13 0.468 0.317 0.380 0.363 0.349 0.337 0.327 0.318 0.309
14 0.278 0.2145 0.239 0.233 0.228 0.224 0.219 0.215 0.211
15 0.143 0.123 0.130 0.128 0.127 0.126 0.124 0.123 0.122
16 0.0416 0.0397 0.0402 0.0401 0.0400 0.0398 0.0397 0.0396 0.0395

(58), namely

S[1,1] : f(a′) =
1 + u1a

′

1 + v1a′
, (79)

where u1 and v1 are (real) parameters. The inverse of Eq. (79) formally
involves two solutions to a quadratic equation, but only one is physical be-
cause it is the only one for which a′ → a as (u1, v1) → (0, 0). This inverse
transformation is

a′ =
−1 + v1a+

√
(1− v1a)2 + 4u1a

2u1
. (80)

The Jacobian is

J =
1 + 2u1a

′ + u1v1(a
′)2

(1 + v1a′)2
. (81)

The transformation function has a Taylor series expansion of the form (22)
with

ks = (u1 − v1)(−v1)s−1 . (82)
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2.2.3 S[1,2] Scheme Transformation

The S[1,2] scheme transformation is the special case of (58) with p = 1 and
q = 2, namely

S[1,2] : f(a′) =
1 + u1a

′

1 + v1a′ + v2(a′)2
, (83)

depending on the three (real) parameters u1, v1, and v2. As with S[1,1],
the inverse of (83) formally involves two solutions to a quadratic equation,
but only one is physical because it is the only one for which a′ → a as
(u1, v1, v2)→ (0, 0, 0). This inverse transformation is

a′ =
−1 + v1a+

√
(1− v1a)2 + 4a(u1 − v2a)

2(u1 − v2a)
. (84)

The Jacobian is

J =
1 + 2u1a

′ + (u1v1 − v2)(a′)2

(1 + v1a′ + v2(a′)2)2
(85)

The transformation function has a Taylor series expansion of the form (22),
but with coefficients ks that are more complicated than those for S[0,1] or
S[1,1]. The first few of these coefficients ks are

k1 = (u1 − v1) , (86)

k2 = −(u1 − v1)v1 − v2 , (87)

k3 = (u1 − v1)v21 + (2v1 − u1)v2 , (88)

k4 = −(u1 − v1)v31 + (v2 − 3v21 + 2u1v1)v2 , (89)

and so forth for higher s.
For sufficiently small |u1| and |v1|, the S[1,1] scheme transformation obeys

the conditions to be applicable at a (perturbatively calculated) IR zero of
the beta function of an asymptotically free gauge theory. Similarly, for suffi-
ciently small |u1|, |v1|, and |v2|, the S[1,2] scheme also obeys these conditions.
Because these scheme transformations involve two and three parameters, re-
spectively, the analysis of the allowed ranges of these parameters is more
complicated than the corresponding analyses given in [36, 38, 39] and for the
one-parameter scheme transformations SLr and SQr here.

One could also consider S[p,q] scheme transformations with higher (finite)
values of p and/or q, but the inverses generically involve equations of cubic
and higher degree, rendering the analytic calculations more cumbersome. We
will thus not pursue these here.
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2.3 Scheme Transformations from an Integral Formal-
ism

Here we introduce and apply a general integral formalism for the construc-
tion of one-parameter families of scheme transformations. This work was
published in Ref. [2]. In this formalism, the starting point is a choice of a
Jacobian J(y) that will be used as the integrand of an integral representation
of the function F (a′) defined in Eq. (20):

a = F (a′) =
∫ a′

0
J(y) dy . (90)

We choose J(y) to be an analytic function of y satisfying the condition

J(0) = 1 . (91)

This guarantees that J(a′) and f(a′) have the respective Taylor series expan-
sions (27) and (22) and hence that f(a′) satisfies the condition f(0) = 1. As
discussed above, the condition C3 for an acceptable scheme transformation
is that the Jacobian must not vanish, since otherwise the transformation is
singular. The property J(0) = 1 together with analyticity of J imply that
J must be positive for the ranges of couplings a and a′ that are relevant for
perturbative calculations for which these scheme transformations are applica-
ble. Thus, we require that J(y) > 0 throughout the range of the integration
variable y in Eq. (90).

We can include dependence of the scheme transformation on a (real)
auxiliary parameter, denoted r. Differentiating Eq. (90) and using a basic
theorem from calculus yields the relation dF (a′)/da′ = da/da′ = J(a′), in
agreement with Eq. (26). Using an appropriate choice for the Jacobian J(z),
we can also satisfy conditions C1-C4.

In addition to these general conditions for the acceptability of a scheme
transformation, another important aspect of the analysis is the ease of in-
verting the transformation to solve for a′ from a. As was evident in Refs.
[37]-[39], for algebraic scheme transformations with finite values of smax in
Eq. (22), the inversion required the solution of an algebraic equation and a
choice of which root to take for this solution. In contrast, for cases of alge-
braic or transcendental scheme transformations with smax = ∞, the inverse
transformations were often simpler, in the sense that one did not have to
make such a choice of which root of an algebraic equation to take.
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To show the usefulness of this integral formalism for the construction of
acceptable scheme transformations, we give some examples. We first illus-
trate how the method works with some scheme transformations that have
already been studied in [1, 36, 37], which are acceptable for the analysis of
a zero in a beta function located away from the origin in coupling constant
space, in particular, an IR zero of the beta function of an asymptotically
free non-Abelian gauge theory. Let us consider, for example, the scheme
transformation

a ≡ F (a′) =
1

r
sinh(ra′) (92)

that was presented in [37] and applied there to study the dependence of the
location of an IR zero in the beta function of an asymptotically free SU(N)
gauge theory on the scheme. This is an example of a class of one-parameter
families of scheme transformations that are invariant under reversal in sign of
the auxiliary parameter r. Hence, for such transformations, we can, without
loss of generality, take this parameter r to be nonnegative, and, as in [37],
we shall do so. This scheme transformation has the inverse

a′ =
1

r
ln
[
ra+

√
1 + (ra)2

]
(93)

and the Jacobian

J =
da

da′
= cosh(ra′) =

√
1 + (ra)2 . (94)

As was shown in [37], this transformation satisfies all of the conditions C1-C4.
To show how one could use our present integral formalism to construct this
scheme transformation, we start with J and replace the variable a′ by the
integration variable y to get J(y) = cosh(ry). Substituting this function into
Eq. (90), we obtain

a = F (a′) =
∫ a′

0
cosh(ry) dy =

1

r
sinh(ra′) , (95)

thereby rederiving the transformation (92).
Another example is provided by one of the scheme transformations that

we studied in [1], namely

a =
1

r
ln(1 + ra′) (96)
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with inverse

a′ =
era − 1

r
. (97)

The Jacobian is

J =
1

1 + ra′
= e−ra . (98)

Again replacing the variable a′ by y to get J(y) = 1/(1 + ry) and then
substituting this into Eq. (90), we reproduce the original transformation:

a = F (a′) =
∫ a′

0

dy

1 + ry
=

1

r
ln(1 + ra′) . (99)

Here, as we discussed in [1], the parameter r is restricted to lie in the range
r > −1/a′ to avoid a singularity in the transformation and is further re-
stricted by the condition that the scheme transformation satisfies conditions
C1-C4.

2.3.1 Transformation with an Algebraic J(y)

We next proceed to present new scheme transformations that we have con-
structed using our integral formalism [2]. Recall that the starting point for
the procedure is a choice of the Jacobian function J(y) that serves as the
integrand in Eq. (90) and that satisfies the requisite conditions that it is
analytic and that J(0) = 1. For our first new transformation, we choose a
J(y) of algebraic form, namely

J(y) = (1 + ry)p , (100)

where the power p is a positive real number. Then, calculating the integral
in Eq. (90), we obtain the scheme transformation

a = F (a′) =
(1 + ra′)p+1 − 1

r(p+ 1)
. (101)

The resultant series expansion for f(a′) = F (a′)/a′ has the form of Eq. (22)
with

ks =
rs

(s+ 1)

(
p

s

)
=

rs

(s+ 1)!

s−1∏
`=0

(p− `) , (102)

where
(
a
b

)
= a!/[b!(a− b)!] is the binomial coefficient. This is a finite series

if p is an integer, and an infinite series otherwise. We list the coefficients ks
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explicitly for the first few values of s for this scheme transformation and for
others discussed in this paper in Table 5. The series (102) has smin = 1 and

ksmin
= k1 =

p r

2
. (103)

The inverse transformation is

a′ =
1

r

[{
(p+ 1)ra+ 1

} 1
p+1 − 1

]
. (104)

Using this inverse transformation, one can express the Jacobian equivalently
as a function of a′:

J = (1 + ra′)p =
[
(p+ 1)ra+ 1

] p
p+1 . (105)

There are two immediate restrictions on the parameter r arising from the
requirement that J > 0 and that there not be any singularity in the scheme
transformation (101), namely

r > − 1

a′
and r > − 1

(p+ 1)a
. (106)

These restrictions are easily met, for example, by requiring that r be non-
negative. Moreover, the interval in the couplings α where one could use
perturbative calculations reliably only extends up to values α ∼ O(1), and
since a = α/(4π), this interval only extends up to a ∼ O(0.1), so for moder-
ate p, the lower bounds (106) evaluate to r ≥ −O(10). This lower bound can
easily be satisfied even with moderate negative values of r. With the restric-
tions (106) satisfied, the scheme transformation (101) satisfies the conditions
C1-C4. If r > 0, then since ksmin

> 0 (where smin = 1 here), it follows from
our general result (25) above that a > a′ for small a, a′. If r is negative
(in the range allowed by above restrictions) then k1 < 0, so a < a′ for small
a, a′.

2.3.2 Transformation with a Transcendental J(y)

For an application of our integral formalism using a Jacobian that is a tran-
scendental function, we choose

J(y) = 1 + tanh(ry) . (107)

33



Then, doing the integral in Eq. (90), we obtain

a = F (a′) = a′ +
1

r
ln
[

cosh(ra′)
]
. (108)

The resultant series expansion for f(a′) = F (a′)/a′ has the form of Eq. (22)
with ks = 0 for s even and

k1 =
r

2
, k3 = − r

3

12
, k5 =

r5

45
, k7 = − 17r7

2520
, (109)

etc. for higher values of s. For comparative purposes, we list these ks for
s up to 4 in Table 5. The Jacobian of this transformation, expressed as a
function of a′, is given by Eq. (107) with y = a′. The inverse of the scheme
transformation has a simple form for certain values of r. For example, for
r = 1, the inverse is

a′ =
1

2
ln(2ea − 1) . (110)

Using Eq. (110), one can also express J as a function of a for this r = 1 case,
obtaining J = 2− e−a.

The allowed range of the parameter r is determined by the requirement
that the scheme transformation must satisfy the conditions C1-C4. If r > 0,
then, since ksmin

> 0 (where smin = 1 here), it follows that a > a′ for small
a, a′, while if r < 0, then k1 < 0, so a < a′ for small a, a′.

2.3.3 Scheme Transformations for which J(y) = (d/dy) lnh(y)

One requirement for the general integral formalism that we have presented
above to be useful is one should be able to do the integral (90). It is therefore
helpful to consider a class of Jacobian functions for which one is guaranteed
to be able to calculate the the integral (90). Clearly, if J(y) is the derivative
of another function, then one can always do this integral. In this section we
present one such class of Jacobian functions [2]. These are functions that can
be expressed as logarithmic derivatives (LDs) of smooth functions denoted
h(y):

J(y) =
d

dy
lnh(y) =

h′(y)

h(y)
. (111)

where h′(y) ≡ dh(y)/dy. To obtain acceptable scheme transformation func-
tions, we require that h(y) is positive for physical (nonnegative) values of the
argument y and that

h(0) = h′(0) . (112)
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The equality (112) guarantees that the present construction satisfies the con-
dition (91) that J(0) = 1 and, as will be shown below, that it also satisfies
the condition (21) that f(0) = 1. With J(y) as specified in Eq. (111), we can
perform the integral (90) immediately, obtaining the transformation function

a = F (a′) =
∫ a′

0

h′(y)

h(y)
dy = ln

[h(a′)

h(0)

]
. (113)

This shows why we required that h(y) be positive for physical values of
y, since otherwise h(0) and/or h(a′) might vanish, rendering the logarithm
singular. Since only the ratio h(a′)/h(0) enters in F (a′), it follows that F (a′)
is invariant under a rescaling of h(y). Consequently, we can, without loss of
generality, normalize h(y) so that h(0) = 1, and we shall do this. Combining
this with Eq. (112), we have

h(0) = h′(0) = 1 , (114)

and combining Eq. (114) with Eq. (113), we obtain

F (a′) = ln[h(a′)] . (115)

To prove that this construction satisfies the condition f(0) = 1, we use
the definition (20) together with the analyticity of h(a′) at a′ = 0. We write
out the Taylor series expansion for h(a′) at the origin and use the property
(112) that we have imposed:

h(a′) = 1 + a′ +
1

2!
h′′(0) (a′)2 + ... (116)

where here and below, the dots ... denote higher powers of a′. Therefore,

f(0) = lim
a′→0

F (a′)

a′

= lim
a′→0

1

a′
ln
[
1 + a′ +

1

2
h′′(0) (a′)2 + ...

]
= 1 . (117)

Secondly, as noted above, this construction satisfies the condition J(0) = 1.
Since a = F (a′) by Eq. (20), Eq. (115) is equivalent to ea = h(a′), so the
inverse transformation is given formally as

a′ = h−1(ea) , (118)
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where h−1 denotes the inverse of the function h. We have found several cases
where this inverse can be calculated explicitly present some of these explicit
examples below.

Our first example of a function h to be used in Eq. (111) and (113) is

h(y) = 1 +
1

r
ln(1 + ry) . (119)

Hence, h′(y) = 1/(1 + ry). By construction, this satisfies the condition that
both h(y) and h′(y) are positive functions for physical (i.e., nonnegative) y
and the condition that h(0) = h′(0). Here, h(0) = h′(0) = 1. From (113), we
have

a = F (a′) = ln
[
1 +

1

r
ln(1 + ra′)

]
. (120)

We remark that for the families of scheme transformations studied so far
in [36, 37, 39] that are dependent on an auxiliary parameter r, such as a =
(1/r) sinh(ra′) and the transformations studied in [1] such as a = (1/r) ln(1+
ra′) and a = a′/(1 − ra′), setting r = 0 yields the identity transformation
a = F (a′) = a′. However, this is not the case for the transformation of Eq.
(120). Instead, setting r = 0 in (120) yields the scheme transformation

r = 0 =⇒ a = F (a′) = ln(1 + a′) . (121)

This property also holds for the transformations (127) and (131) discussed
below. As is necessary, Eq. (121) obeys the requirement (21) that f(0) = 1,
i.e., that the transformation becomes an identity a = a′ in the free-field limit
a→ 0.

The resultant series expansion for f(a′) = F (a′)/a′ has the form of Eq.
(22) with the ks coefficients displayed in Table 5. In the special case r = 0,
the coefficients ks are given by the Taylor series expansion of (1/a′) ln(1 +a′)
around a′ = 0, namely

r = 0 =⇒ ks =
(−1)s

s+ 1
. (122)

The inverse transformation is

a′ =
1

r

[
exp[r(ea − 1)]− 1

]
. (123)
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For the Jacobian, expressed in terms of a′ and a, we calculate

J =
1

(1 + ra′)
[
1 + 1

r
ln(1 + ra′)

]
= exp[−a− r(ea − 1)] . (124)

The parameter r is restricted to the range

r > − 1

a′
(125)

in order to avoid singularities in h(y) and F (a′) and is further restricted by
the requirement that this scheme transformation must satisfy the conditions
C1-C4. These conditions can be satisfied for small positive r. With r positive
(indeed with r > −1), ksmin

< 0 (where smin = 1 here), so our general result
(25) implies that a < a′ for small a, a′.

Next, a second example is provided by the function

h(y) = 1 +
1

r
sinh(ry) . (126)

Then h′(y) = cosh(ry). Without loss of generality, the parameter r can be
taken to be nonnegative, and we shall do this. Evidently, this function h(y)
satisfies the condition (114). From the general result (113), we obtain

a = F (a′) = ln
[
1 +

1

r
sinh(ra′)

]
. (127)

The resultant series expansion for f(a′) = F (a′)/a′ has the form of Eq. (22),
and we list the first few coefficients ks in Table 5. The invariance of the
transformation F (a′) in Eq. (127) under the reversal in sign of the auxiliary
parameter r is reflected in the property that the ks involve only even powers
of r. Here smin = 1 and ksmin

< 0, so by our general result (25), it follows
that a < a′ for small a, a′.

The inverse transformation is

a′ =
1

r
ln
[
r(ea − 1) +

√
1 + [r(ea − 1)]2

]
. (128)

for the Jacobian we calculate

J =
cosh(ra′)

1 + 1
r

sinh(ra′)
. (129)
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This transformation satisfies all of the conditions C1-C4.

Lastly we discuss a third function h for use in Eq. (111) and (113), namely

h(y) = 1 +
1

r
tanh(ry) . (130)

Thus, h′(y) = 1/ cosh2(ry). This satisfies the condition (114). As with the
previous h(y) function in Eq. (126), we can, without loss of generality, take
the parameter r to be nonnegative, and we shall do this. From the general
result (113), we obtain

a = F (a′) = ln
[
1 +

1

r
tanh(ra′)

]
. (131)

The resultant series expansion for f(a′) = F (a′)/a′ has the form of Eq. (22)
with the first few ks coefficients listed in Table 5.

The inverse transformation is

a′ =
1

2r
ln
[

1 + r(ea − 1)

1− r(ea − 1)

]
. (132)

The Jacobian, expressed as a function of a′ and of a, is

J(a′) =
1

cosh2(ra′)
[
1 + 1

r
tanh(ra′)

]
= e−a

[
1 + r(ea − 1)

][
1− r(ea − 1)

]
. (133)

Although the transformation in Eq. (131) and the Jacobian in Eq. (133)
are nonsingular for any r, the inverse transformation (132) does contain a
singularity which restricts the range of r. This singularity occurs at r =
±1/(ea − 1). Recalling that, without loss of generality, r has been taken to
be nonnegative, we restrict r to be substantially less than 1/(ea−1) to avoid
the singularity in the inverse transformation.

2.3.4 Scheme Transformations for which J(y) = (d/dy)eφ(y)

Here we present another class of J(y) functions that can be used in conjunc-
tion with our integral formalism to construct scheme transformations [2]. As
was true of the functions in Section 2.3.3, these function have the form of
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total derivatives, which guarantees that one can do the integral (90). We
begin with an analytic function φ(y) that satisfies the conditions

φ(0) = 0, φ′(0) = 1 . (134)

We then set J(y) equal to the derivative of the exponential of this function:

J(y) =
d

dy
eφ(y) = φ′(y)eφ(y) . (135)

Substituting this into the integral (90), we obtain

a = F (a′) = eφ(a
′) − eφ(0) = eφ(a

′) − 1 . (136)

This yields J(a′) = dF (a′)/da′ = φ′(a′)eφ(a
′) so that, taking into account

the property (134), it follows that J(0) = 1. Furthermore, this construction
guarantees that the condition f(0) = 1 in Eq. (21) is satisfied. To prove
this, we use the defining relation a = a′f(a′) = F (a′) in Eq. (20) to obtain

f(a′) =
eφ(a

′) − 1

a′
. (137)

Expanding the numerator in a Taylor series around a′ = 0, we get

f(a′) =
1

a′

[
eφ(0) − 1 + φ′(0)a′ +O((a′)2)

]
= 1 +O(a′) , (138)

from which it follows that f(0) = 1. The inverse is, formally,

a′ = φ−1[ln(a+ 1)] , (139)

where here φ−1 denotes the function that is the inverse of φ. We have found
several cases where this inverse can be calculated explicitly present some of
these explicit examples below.

As a first example of this type of construction, we take

φ(y) =
1

r
(ery − 1) . (140)
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This function satisfies the condition (134). Substituting the resultant J(y) =
ery exp[(1/r)(ery − 1)] into Eq. (90), we obtain the scheme transformation

a = F (a′) = exp
[1
r

(era
′ − 1)

]
− 1 . (141)

The resultant series expansion for f(a′) = F (a′)/a′ has the form of Eq. (22)
with the first few ks coefficients listed in Table 5. Note that in the limit as
r → 0, the scheme transformation (141) becomes

r = 0 =⇒ a = F (a′) = ea
′ − 1 . (142)

Hence, in this limit the coefficients are given by

r = 0 =⇒ ks =
1

s!
. (143)

These results also hold for the transformation (147) to be discussed below.
The inverse transformation is

a′ =
1

r
ln
[
1 + r ln(a+ 1)

]
. (144)

Using this, we may express the Jacobian in terms of a:

J = era
′
exp

[1
r

(era
′ − 1)

]
= (a+ 1)[1 + r ln(a+ 1)] . (145)

This transformation satisfies conditions C1-C4.

In the second place, we use

φ(y) =
1

r
sinh(ry) . (146)

As before, without loss of generality, we take the auxiliary parameter r to
be nonnegative. This function satisfies the condition (134). Substituting
the resultant J(y) = (d/dy) e(1/r) sinh(ry) into Eq. (90), we obtain the scheme
transformation

a = F (a′) = e(1/r) sinh(ra
′) − 1 . (147)

The resultant series expansion for f(a′) = F (a′)/a′ has the form of Eq. (22)
with the ks coefficients listed in Table 5. Because ksmin

> 0 (where smin = 1
here), our general result (25) implies that a > a′ for small a, a′.
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The inverse transformation is

a′ =
1

r
ln
[
r ln(a+ 1) +

√
1 + [r ln(a+ 1)]2

]
. (148)

The Jacobian is
J = cosh(ra′) e(1/r) sinh(ra

′) . (149)

This transformation satisfies conditions C1-C4.
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Table 5: Values of the coefficients ks in Eq. (22) for scheme transformations discussed in the text. The transformation F (a′)
is defined by Eq. (20): a = a′f(a′) = F (a′).

F (a′) k1 k2 k3 k4
(1/r) sinh(ra′) 0 r2/6 0 r4/120
(1/r) tanh(ra′) 0 −r2/3 0 2r4/15

(1/r) ln(1 + ra′) −r/2 r2/3 −r3/4 r4/5
a′/(1− ra′) r r2 r3 r4

(1+ra′)p+1−1
r(p+1)

r
2
p r2

3

(
p
2

)
r3

4

(
p
3

)
r4

5

(
p
4

)
ln[1 + (1/r)(a+ ra′)] −(r + 1)/2 (2r2 + 3r + 2)/6 −(6r3 + 11r2 + 12r + 6)/24 (12r4 + 25r3 + 35r2 + 30r + 12)/60

a′ + (1/r) ln[1 + cosh(ra′)] (1/2)r 0 −(1/12)r3 0
ln[1 + (1/r) sinh(ra′)] −1/2 (r2 + 2)/6 −(2r2 + 3)/12 (r4 + 20r2 + 24)/120
ln[1 + (1/r) tanh(ra′)] −1/2 (1− r2)/3 (4r2 − 3)/12 (r2 − 1)(2r2 − 3)/15

exp[(1/r)(era
′ − 1)]− 1 (r + 1)/2 (r2 + 3r + 1)/6 (r3 + 7r2 + 6r + 1)/24 (r4 + 15r3 + 25r2 + 10r + 1)/120

exp[(1/r) sinh(ra′)]− 1 1/2 (r2 + 1)/6 (4r2 + 1)/24 (r4 + 10r2 + 1)/120
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3 Renormalization-Group Evolution of N = 1

Supersymmetric Gauge Theories

It is of considerable interest to study scheme-dependence in supersymmetric
gauge theories. In this section we shall discuss our use of Padé methods to
study the beta function of vectorial, asymptotically free, N = 1 supersym-
metric SU(Nc) gauge theories. This work was published with Prof. R. Shrock
in Ref. [3]. We investigate both the purely gluonic supersymmetric Yang-
Mills (SYM) gauge theory and theories with matter content consisting of Nf

copies of massless chiral superfields Φi and Φ̃i, i = 1, ..., Nf , which transform
according to the respective representations R and R̄ of SU(Nc). We consider
the cases where R is the fundamental representation and where R is the
symmetric and antisymmetric rank-2 tensor representation of SU(Nc).

In our analysis, we will make use of the closed-form calculation of βα by
Novikov, Shifman, Vainshtein, and Zakharov (NSVZ) in [55] (see also [56]),
denoted βα,NSV Z , which is written in a closed form within the scheme used
for its calculation (called the NSVZ scheme). This beta function exhibits a
pole at a certain value of the coupling [55, 56, 57] (see Eq. (162) below).
Furthermore, we will make use of a number of exact results that have been
obtained using effective holomorphic action methods concerning the infrared
properties of this theory [58, 59]. The beta function of an N = 1 super-
symmetric gauge theory with general chiral superfield matter content has
been calculated up to three-loop order [60, 62], and, for the pure gluonic
SYM theory, up to four-loop order [63] in the dimensional reduction scheme
with minimal subtraction [64], denoted DR. Using these results, we calculate
Padé approximants to the beta function of the pure gluonic SYM theory up
to four-loop order and to the beta functions of the theories with chiral super-
fields in the fundamental and rank-2 tensor representations up to three-loop
order. The theories with sufficiently large matter superfield content have a
perturbative IR zero in the beta function. Previously, Refs. [33] by Profs.
T. Ryttov and R. Shrock, and Refs. [31]-[32] by Shrock, presented calcula-
tions of properties of the beta function, including an IR zero, from the two
and three-loop beta function. In the present work we extend these studies
in several ways. Using our calculation of Padé approximants for the SYM
theory and for theories with various matter superfield content, we address
and answer several questions:

1. How the value of the IR zero in the Padé approximants compares with
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the IR zero in the DR and NSVZ beta functions, for cases where such
an IR zero is present.

2. Whether these Padé approximants to the DR beta function exhibit a
robust indication of a pole, as in the NSVZ beta function.

3. If the answer to question (ii) is affirmative, whether this pole occurs at
a value of α near to the value in the NSVZ beta function and, moreover,
closer to the origin than an IR zero (if the latter is present) and hence
dominates the UV to IR evolution.

Our calculations and analysis provide a quantitative measure, for these var-
ious supersymmetric theories, of how well finite-order perturbative results
calculated in the DR scheme reproduce the properties of the NSVZ beta
function. Some related work is in Refs. [65]-[70]. A different approach
is to calculate scheme-independent series expansions for physical quantities
[42, 47].

This section is organized as follows. In Sec.3.1 we discuss the beta func-
tion and exact results on the properties of the theory. In Sect.3.2 we calculate
and analyze Padé approximants for the pure gluonic supersymmetric Yang-
Mills theory. Sec.3.3 is devoted to the corresponding calculation and analysis
of Padé approximants for the theory with chiral superfields in the fundamen-
tal and conjugate fundamental representation. In Sec.3.4. we investigate
the theory with chiral superfields in the rank-2 tensor and conjugate tensor
representations.

3.1 Beta Function and Exact Results

3.1.1 Beta Function

In this section we review some basic results on the beta function and also
some exact results that we will use for our analysis. The beta function has
a series expansion of the form given above in (13). The first two coefficients
in the expansion (13), which are scheme-independent [60], are [61]

b1 = 3CA − 2TfNf (150)

and
b2 = 6C2

A − 4(CA + 2Cf )TfNf . (151)
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In the commonly used DR scheme, the three-loop coefficient is [62]

b3 = 21C3
A + 4(−5C2

A − 13CACf + 4C2
f )TfNf

+ 4(CA + 6Cf )(TfNf )
2 . (152)

For pure N = 1 supersymmetric Yang-Mills theory (with no matter chiral
superfields, i.e., Nf = 0), the four-loop coefficient, b4, has also been calculated
[63] and will be used in our analysis of this SYM theory below.

If Nf = 0, then b1 > 0; as Nf increases from zero, b1 decreases mono-
tonically and passes through zero, reversing sign, at the value Nf = Nf,b1z,
where [51]

Nf,b1z =
3CA
2Tf

(153)

(and the subscript b1z stands for “b1 zero”). If Nc and R are such that
Nf,b1z is an integer and if Nf = Nf,b1z, so that b1 = 0, then b2 has the
negative value −12CACf . Hence, the requirement of asymptotic freedom,
which means β < 0 near the origin, is true (given the minus sign that we
have extracted in Eq. (13)) if and only if b1 > 0. Therefore, we restrict to

Nf < Nf,b1z . (154)

Similarly, for Nf = 0, b2 > 0, and as Nf increases from zero, b2 decreases
monotonically and passes through zero, reversing sign, at the value Nf =
Nf,b2z, where

Nf,b2z =
3C2

A

2Tf (CA + 2Cf )
. (155)

For an arbitrary fermion representation R, Nf,b2z < Nf,b1z, so there is always
an interval I in Nf where b1 > 0 and b2 < 0. This interval is Nf,b2z < Nf <
Nf,b1z, i.e.,

I :
3C2

A

2Tf (CA + 2Cf )
< Nf <

3CA
2Tf

. (156)

For Nf ∈ I, the two-loop (2`) beta function has an IR zero at

αIR,2` = − b̄1
b̄2

= −4πb1
b2

=
2π(3CA − 2TfNf )

2(CA + 2Cf )TfNf − 3C2
A

. (157)
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Clearly, if Nf is too close to Nf,b2z, then b2 is sufficiently small that αIR,2` is
too large for this perturbative two-loop result to be reliable. As noted, the
two-loop beta function encodes the maximal scheme-independent perturba-
tive information about the theory.

Given that Nf ∈ I and that αIR,2` is sufficiently small for the perturbative
analysis of the beta function to be reasonable, a natural next step in the
analysis of the UV to IR evolution of the theory is to examine the three-loop
beta function. The three-loop beta function has two zeros away from the
origin, given by the equation b1 + b2a + b3a

2 = 0 or equivalently, b̄1 + b̄2α +
b̄3α

2 = 0. The solutions are

α =
1

2b̄3

[
− b̄2 ±

√
b̄22 − 4b̄1b̄3

]
. (158)

The smaller one of these two solutions is the one that will be relevant for our
analysis, and we label it as αIR,3`.

3.1.2 NSVZ Beta Function

A closed-form expression for the beta function was derived by Novikov, Shif-
man, Vainshtein, and Zakharov in [55] and discussed further in [56]; this
is

βα,NSV Z =
dα

dt
= −α

2

2π

[
b1 − 2TfNfγm

1− 2CAa

]
, (159)

where γm is the anomalous dimension of the fermion bilinear product ψTi Cψ̃i,
or equivalently, ψ̄iψi, of component fermion fields in the quadratic superfield
operator product ΦiΦ̃i (no sum on the flavor index i). As noted above, this
beta function can be written in closed form in the NSVZ scheme used in [55].
This anomalous dimension has the series expansion

γm =
∞∑
`=1

c` a
` =

∞∑
`=1

c̄` α
` , (160)

where c̄` = c`/(4π)` is the `-loop series coefficient. Only the one-loop coeffi-
cient c1 is scheme-independent, and is

c1 = 4Cf . (161)

Given our restriction to asymptotically free supersymmetric gauge the-
ories, βα,NSV Z has a UV zero at α = 0. For the pure gluonic SYM theory,
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βα,NSV Z has no IR zero; for theories with nonzero matter superfield content,
it may or may not have an IR zero, depending on this content. This will be
discussed further below. As is evident from Eq. (159), βα,NSV Z has a pole at

apole,NSV Z =
αNSV Z

4π
=

1

2CA
. (162)

An important property of this pole is that its position is independent of R
and Nf .

3.1.3 General Result on IR Phase Properties

A number of exact results have been established for this asymptotically free
supersymmetric gauge theory [55, 56, 58] (see also [59, 69]). We recall one
property that is particularly relevant to our present work: if Nf is in the
interval Nf,cr < Nf < Nf,b1z, where

Nf,cr =
3CA
4Tf

=
Nb1z

2
, (163)

i.e., explicitly, the interval

INf ,NACP :
3CA
4Tf

< Nf <
3CA
2Tf

, (164)

then the theory flows from weak coupling in the UV to a superconformal IR
fixed point. The resultant theory is in a (deconfined) non-Abelian Coulomb
phase (NACP) without any spontaneous chiral symmetry breaking. In Eqs.
(163) and (164), it is understood that, physically, Nf must be an integer [51],
so the actual values of Nf in the NACP are understood to be the integers
that satisfy the inequality (164).

3.2 N = 1 Supersymmetric Yang-Mills Theory

In this section we study the case Nf = 0, i.e., supersymmetric Yang-Mills
theory. We use Padé approximants to the n-loop beta function with 2 ≤ n ≤
4 calculated in the DR scheme to investigate how the properties of this beta
function compare with those of the NSVZ beta function. This comparison
elucidates the question of how sensitive these properties are to the scheme
used for the calculation.
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In this SYM theory the calculated coefficients b` depend on a and CA via
the product

x ≡ CAa . (165)

or equivalently, ξ ≡ CAα. Consequently, it is natural to re-express the beta
function in terms of this product as the expansion variable. We thus define

βx ≡
dx

dt
= CA

da

dt
=
CA
4π

βα . (166)

Since b` ∝ C`
A, we define

b̂` ≡
b`
C`
A

. (167)

From Eqs. (150)-(152), one has the two scheme-independent coefficients

b̂1 = 3 , b̂2 = 6 (168)

and, in the DR scheme,
b̂3 = 21 . (169)

For this SYM theory, the four-loop coefficient has also been calculated in the
DR scheme [63], and it is

b̂4 = 102 . (170)

The beta function can be written as

βx = −2x2
∞∑
`=1

b̂` x
`−1 . (171)

The n-loop beta function βx,n` is defined by Eq. (171) with the upper limit
on the sum given by ` = n. Explicitly, using the DR scheme for b3 and b4,

SYM : βx,4`,DR = −6x2(1 + 2x+ 7x2 + 34x3) . (172)

It will be convenient to define a reduced (rd) beta function, βx,rd:

βx,rd ≡ −
βx

2x2 b̂1
= 1 +

1

b̂1

∞∑
`=2

b̂` x
`−1 . (173)

This separates off the factor that gives rise to a UV zero at x = 0 so that
we can concentrate on the region of interest, namely the IR behavior. The
point here is that both βx,NSV Z and βx,DR are guaranteed to have the same
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UV behavior in the vicinity of the origin because of the asymptotic freedom
of the theory and the fact that the first two orders in the loop expansion are
scheme-independent. The question is how well they agree in the IR. As with
the full beta function, we also define the n-loop truncation of βx,rd, denoted
βx,rd,n`, as Eq. (173) with the upper limit on the sum given by ` = n; this
is thus a polynomial of degree n − 1 in x. In the DR scheme, the four-loop
reduced beta function is

SYM : βx,rd,4`,DR = 1 + 2x+ 7x2 + 34x3 . (174)

We first analyze the zeros of βx,rd,n` for 2 ≤ n ≤ 4. Since each term is
positive, it is clear that at the two-loop level and also, in the DR scheme,
at the n = 3, 4 loop level, the respective n-loop reduced beta function has
no physical zero. Specifically, the reduced two-loop beta function βx,rd,2`
has only an unphysical zero away from the origin, at x = −1/2. With b3
calculated in the DR scheme, the reduced three-loop beta function βx,rd,3`
has an unphysical pair of complex-conjugate zeros, at

x =
1

7
(−1±

√
6 i) = −0.14286± 0.34993i (175)

(Here and below, floating-point numbers are listed to the indicated accuracy.)
The reduced four-loop beta function βx,rd,4`,DR has three unphysical roots, at

x = −0.3152, x = 0.05466± 0.3005i . (176)

We now compare the properties of βx,DR and βx,NSV Z for the SYM the-
ory. The series expansions of these two beta functions about x = 0 are
necessarily equal up to two-loop order inclusive, since the beta function is
scheme-independent up to and including this order. Beyond two-loop order
they differ, as is to be expected, since they are calculated in different schemes.
An important question is whether, although they differ in detail, these two
beta functions at least exhibit qualitatively similar physical properties. To
answer this question, we first express the NSVZ beta function for the SYM
theory in terms of βx, obtaining

βx,NSV Z,SYM = − 6x2

1− 2x
, (177)

so that the reduced NSVZ beta function for the SYM theory is

βx,rd,NSV Z,SYM =
1

1− 2x
. (178)
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This βx,rd,NSV Z,SYM = 1/(1− 2x) is in the form of a [0,1] Padé approximant,
a property that will be used below. Clearly, βx,rd,NSV Z,SYM has no IR zero
and, as is evident from Eq. (162) (or equivalently, Eq. (178)), it has a pole
at x = 1/2:

xpole,NSV Z =
1

2
. (179)

Interestingly, the βx,rd,n`,DR functions at the n = 2, 3, 4 loop levels all share
the same property as βx,NSV Z in having no (physical) IR zero. This property
will be discussed further below.

We next carry out our Padé calculations and analysis. In general, the
n-loop reduced beta function βx,rd,n` is a polynomial of degree n− 1 in x. At
loop order n ≥ 3, the coefficients in this function depend on the scheme used
for the calculation, and hence, where this is not obvious from context, we
shall indicate the scheme with an additional subscript. Since all of the [p, q]
Padé approximants that we calculate will apply to the beta function in the
DR scheme, it is not necessary to indicate this. We can thus calculate [p, q]
Padé approximants of the form

[p, q]βx,rd,n`
=

1 +
∑p
j=1 njx

j

1 +
∑q
k=1 dk x

k
(180)

with
p+ q = n− 1 , (181)

where the nj and dj are x-independent coefficients of the respective polyno-
mials in the numerator and denominator of [p, q]βx,rd,n`

. (Our notation for
Padé approximants follows the notation in, e.g., [71].) Thus, as with βx,rd,n`
itself, each Padé approximant is normalized so that [p, q]βx,rd,n`

= 1 at x = 0.
For a given βx,rd,n`, there are thus n Padé approximants, namely the set

{ [n− k, k − 1]βx,rd,n`
} with 1 ≤ k ≤ n . (182)

We shall generically denote one of the p zeros of a [p, q]]βx,rd,n`
Padé approx-

imant as [p, q]zero and one of the q poles of this approximant as [p, q]pole; in
each case, the value of n is given by Eq. (181) as n = p + q + 1 and will
sometimes be omitted for brevity.

Since
[n− 1, 0]βx,rd,n`

= βx,rd,n` , (183)
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i.e., the [n− 1, 0]βx,rd,n`
Padé approximant is identical to the n-loop reduced

beta function itself, whose zeros we have already analyzed, we mainly re-
strict our consideration below to Padé approximants [p, q]βx,rd,n`

with q 6= 0.
Since b1 and b2 are scheme-independent, it follows that for n = 1, 2, the
corresponding Padé approximants are scheme-independent. Note that for an
arbitrary polynomial 1 +

∑
j fjx

j, the zero of the [1, 0] Padé approximant,
1 + f1x, denoted as [1, 0]zero, occurs at minus the value of the pole in the
[0, 1] approximant 1/(1− f1x), denoted as [0, 1]pole, i.e.,

[1, 0]zero = − 1

f1
= −[0, 1]pole . (184)

We can also explore the correspondence between the pole at x = 1/2 in
βx,rd,NSV Z and the structure of βx,rd,n`,DR. Although βx,rd,n`,DR is a poly-
nomial and hence obviously has no poles, we can investigate whether [p, q]
Padé approximants to βx,rd,n`,DR with q 6= 0 share properties in common with
βx,rd,NSV Z .

We shall address and answer the following specific questions concerning
the [p, q] Padé approximants:

1. Considering the [p, q] Padé approximants to βx,rd,n`,DR, do the [p, q]
approximants with p 6= 0 exhibit a physical IR zero?

2. Considering the [p, q] Padé approximants to βx,rd,n`,DR, do the [p, q]
approximants with q 6= 0 exhibit a physical pole?

3. If a given [p, q] Padé approximant with q 6= 0 does exhibit a physical
pole, does this pole dominate the UV to IR evolution? This is the case
if and only if this pole occurs closer to the origin x = 0 than a physical
IR zero.

4. If the answers to the previous two questions are affirmative, then is the
value of the pole in the given [p, q] Padé approximant with q 6= 0 close
to the value xIR,NSV Z = 1/2?

5. If the answers to questions 1 and 2 are affirmative, then, independent
of whether the poles in the [p, q] approximants with q 6= 0 are close
to xIR,NSV Z = 1/2, do different approximants at least exhibit a stable
physical pole? That is, do these [p, q] Padé approximants with q 6= 0
exhibit a stable physical pole?
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The answers to these questions elucidate how general and robust are the
properties of the SYM beta function calculated in different schemes, in par-
ticular, the absence of an IR zero and the presence of a pole in the NSVZ
SYM beta function. We have already partially answered the first question,
since we have shown that there is no IR zero in the two-loop beta function
and also none in the three-loop or four-loop beta function in the DR scheme,
in agreement with the absence of an IR zero in the NSVZ beta function for
this SYM theory. We complete this first answer by examining [p, q] Padé
approximants with both p and q nonzero and also address the questions per-
taining to a pole.

From the two-loop reduced beta function βx,rd,2`, we can calculate one
Padé approximant with q 6= 0, namely

[0, 1]βx,rd,2` =
1

1− 2x
. (185)

This is the same as the reduced NSVZ beta function, βx,rd,NSV Z,SYM in Eq.
(178), and hence their poles are at the same location:

[0, 1]pole,βx,rd,n`
=

1

2
= xpole,NSV Z . (186)

Although βx,rd,NSV Z,SYM = 1/(1−2x) was obtained by a sum to infinite-loop
order and hence is scheme-dependent, the pole in the [0,1] Padé approximant
was derived from the two-loop beta function βx,rd,2` and hence is scheme-
independent.

We proceed next to the comparison at the three-loop order. From the
reduced three-loop reduced beta function, βx,rd,3`,DR, we can calculate two
Padé approximants with q 6= 0, namely

[1, 1]βx,rd,3` =
1− (3/2)x

1− (7/2)x
(187)

and

[0, 2]βx,rd,3` =
1

(1 + x)(1− 3x)
. (188)

As is evident from (187), the [1, 1]βx,rd,3` Padé has a pole at x = 2/7 = 0.2857
and a zero at x = 2/3. These are listed in Table 6. As the theory flows from
the UV to the IR, x increases from 0 and reaches the IR pole at 2/7 before it
reaches the zero, so the latter is not relevant to this UV to IR evolution from
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Table 6: Values of zeros and poles, in the variable x, of various Padé approximants to
βx,rd,2` and βx,rd,n`,DR with n = 3, 4 for N = 1 supersymmetric Yang-Mills theory, SYM.
Results are given to the indicated floating-point accuracy. The abbreviation NA means
“not applicable”.

n [p, q] zero(s) pole(s)
2 [1,0] −1/2 NA
2 [0,1] NA 1/2
3 [2,0] 0.143± 0.350i NA
3 [1,1] 2/3 2/7 = 0.286
3 [0,2] NA −1, 1/3
4 [3,0] −0.315, 0.0547± 0.3005i NA
4 [2,1] −1.330, 0.277 7/34 = 0.206
4 [1,2] 3/14 = 0.214 0.181, 0.871
4 [0,3] NA 0.265, −0.240± 0.461i

weak coupling. The [0, 2]βx,rd,3` Padé exhibits an unphysical pole at x = −1
and a physical pole at x = 1/3. Since this Padé has no zero, the pole at
x = 1/3 again dominates the UV to IR evolution.

From the four-loop reduced beta function βx,rd,4`,DR, we can calculate
three [p, q] Padé approximants with q 6= 0, namely

[2, 1]βx,rd,4` =
1− (20/7)x− (19/7)x2

1− (34/7)x
, (189)

[1, 2]βx,rd,4` =
1− (14/3)x

1− (20/3)x+ (19/3)x2
, (190)

and

[0, 3]βx,rd,4` =
1

1− 2x− 3x2 − 14x3
. (191)

The [2, 1]βx,rd,4` Padé has zeros at x = (1/19)(−10±
√

233 ), i.e, x = 0.2771
and x = −1.3297, and a pole at x = 7/34 = 0.2059. The [1, 2]βx,rd,4` Padé

has a zero at x = 3/14 = 0.2143 and two poles, at x = (1/19)(10 ±
√

43 ),
i.e., x = 0.8714 and x = 0.1812. Finally, the [0, 3]βx,rd,4` Padé has three poles,
at x = 0.26481 and x = −0.23955± 0.4608i. As with our other Padé results
for the SYM theory, these are listed in Table 6.
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These results provide answers to the five questions that we posed above.
Concerning the first question, the [1,0] approximant to βx,rd,2` and the [2,0],
and [3,0] approximants to βx,rd,n`,DR for n = 3, 4 have no IR zero, in agree-
ment with the NSVZ beta function. Although the [1,1] approximant to
βx,rd,3`DR and the [2,1] and [1,2] approximants to βx,rd,4`,DR do have (physical)
IR zeros, in each case, the IR zero occurs farther from the origin than the
pole in the respective approximant and hence does not directly influence the
UV to IR evolution. Thus, the results from all of these Padé approximants
to βx,rd,n`,DR for 2 ≤ n ≤ 4 are in agreement with the NSVZ beta function
for this SYM theory as regards the absence of an IR zero affecting the UV
to IR evolution.

The answer to the second question is yes; that is, all of the Padé ap-
proximants to the various n-loop reduced beta functions in the DR scheme,
βx,rd,n`,DR, up to n = 4 loop order, agree with βx,rd,NSV Z as regards the prop-
erty that they exhibit a physical IR pole. The answer to the third question is
also yes; in each case where a [p, q] Padé approximant to βx,rd,n`,DR exhibits
a physical pole, this pole occurs closer to the origin than any physical zero(s)
(if such a zero is present at all) and hence dominates the UV to IR evolution.

We come next to question 4, concerning the numerical agreement of the
(physical) pole in the [p, q] Padé approximants with q 6= 0 with the position
of the pole at x = 1/2 in the NSVZ beta function. To answer this question,
for each [p, q] approximant to βx,rd,n`,DR with q 6= 0, one takes the pole among
the q poles at a physical (positive real) value of x (if there is such a pole)
closest to the origin. This is the IR pole for this approximant. As noted, this
agreement is automatic in the two-loop case, so the question really applies
at the three-loop and four-loop level. As is evident in Table 6, the two Padé
approximants with q 6= 0 formed from the three-loop beta function, namely
[1,1] and [0,2], have poles at the respective values x = 0.286 and x = 0.333.
At the four-loop level, the values of the poles closest to the origin in the [2,1],
[1,2], and [0,3] Padé approximants are x = 0.206, 0.181, 0.265, respectively.
However, none of these is particularly close to the value x = 0.5 of the pole
in the NSVZ beta function. Nevertheless, we can at least say that the values
of the (physical) pole in the various [p, q] approximants to βx,rd,n`,DR with
n = 3, 4 do not differ from the value x = 1/2 in βx,rd,NSV Z by more than a
factor of about 2.8.

Finally, we address the fifth question. The importance of this question
stems from the fact that when one switches schemes, one does not expect
a pole (or zero) to occur at the same position as in another scheme, but

54



at least different [p, q] Padé approximants should yield a reasonably stable
value of this pole, especially as one calculates to progressively higher-loop
order. There are thus two categories of comparisons that one can make here,
namely comparing the stability of the position of a pole appearing in [p, q]
Padé approximants for different loop orders n, and comparing this stability
for a given n-loop order in [p, q] Padé approximants with different p and q
(satisfying p + q = n − 1), at a high-enough order so that there are several
[p, q] approximants with poles. Regarding the comparison among different
loop orders, as is evident from Table 6, the values of the poles range from the
value from the two-loop result, which is automatically equal to x = 0.5, to a
low of x = 0.181 for the physical pole in the [1, 2]βx,rd,4` Padé, a factor of 2.8
smaller. Regarding the range of values of physical pole positions from the
Padé approximants at a given loop order, the range is given, at the three-loop
order, by the ratio

[0, 2]pole
[1, 1]pole

=
7

6
= 1.167 , (192)

and, at the four-loop order, by two independent ratios, which may be taken
to be

[0, 3]pole
[1, 2]pole

= 1.462 , (193)

and
[1, 2]pole
[2, 1]pole

= 0.88005 . (194)

One also has
[0, 3]pole
[2, 1]pole

=
[0, 3]pole
[1, 2]pole

[1, 2]pole
[2, 1]pole

= 1.286 . (195)

Summarizing the findings from our Padé analysis for the SYM theory, the
results show excellent agreement between the beta function, calculated up to
four-loop order in the DR scheme, and the NSVZ beta function, concerning
the absence of an IR zero that affects the UV to IR evolution. Furthermore,
the answers to questions 2 and 3 show that the Padé approximants to this
beta function in the DR scheme are consistent with the existence of an IR
pole that dominates the UV to IR evolution, again in agreement with the
NSVZ beta function. The answer to the fourth question can be interpreted
as a consequence of the scheme-dependence of a pole in a beta function. The
answer to the fifth question suggests that, assuming that the beta function
in the DR scheme does, indeed, encode evidence for a physical pole that
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dominates the UV to IR evolution in this SYM theory, one must calculate
this beta function to higher than four-loop order in order for the [p, q] Padé
approximants with q 6= 0 to yield a stable value for the location of this zero.

3.3 Supersymmetric SU(Nc) Quantum Chromodynam-
ics

In this section we discuss our investigation in [3] of an asymptotically free
vectorial gauge theory with N = 1 supersymmetry, gauge group SU(Nc),
and Nf copies (flavors) of massless chiral superfields Φi and Φ̃i, i = 1, ..., Nf ,
transforming according to the fundamental and conjugate fundamental rep-
resentations of SU(Nc).

This theory is often called supersymmetric quantum chromodynamics
(SQCD), and we shall also use this nomenclature, keeping in mind that the
gauge group is generalized from the actual SU(3) color group of real-world
QCD to SU(Nc). We restrict our consideration to values Nf 6= 0 here, since
if Nf = 0, the present theory reduces to a pure supersymmetric Yang-Mills
gauge theory, which we have also discussed above. As we did with the SYM
theory, we shall use Padé approximants to investigate the question of the
extent to which the beta function for this theory, as calculated in the DR
scheme, exhibits properties in agreement with the properties of the NSVZ
beta function, (159).

3.3.1 Some General Properties

We recall some basic well-known properties of this theory, many of which
follow as special cases of the general discussion in Sect. 3.1 for the funda-
mental representation. For this case, the upper bound on Nf imposed by the
condition of asymptotic freedom, Eq. (154), reads

Nf < 3Nc . (196)

The exact result (163) on the value of Nf at the lower boundary of the IR
non-Abelian Coulomb phase reads [51]

Nf,cr =
3Nc

2
, (197)
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If Nc is odd, this is only a formal result, since Nf,cr must be integral. Thus,
the (chirally symmetric, deconfined) IR non-Abelian Coulomb phase is spec-
ified, from Eq. (198), by Nf in the interval

3Nc

2
< Nf < 3Nc . (198)

For our present case with R being the fundamental representation, Eq.
(155) specializes to

Nf,b2z =
3Nc

2−N−2c
. (199)

Hence, the range of values of Nf in Eq. (156) where the two-loop beta
function has an IR zero is [51]

3Nc

2−N−2c
< Nf < 3Nc . (200)

Numerical values of Nf,cr, Nf,b2z, Nf,b3z, and Nf,b1z = Nf,max were listed for
2 ≤ Nc ≤ 5 in Table II of Ref. [33]. As was noted in [33], the value of
Nf,b2z in Eq. (199) is greater (for all finite Nc) than the exactly known lower
boundary of the non-Abelian Coulomb phase in Eq. (197). Results for the
values of the IR zero in the two-loop and three-loop beta function, αIR,2` and
αIR,3`, were given in [33].

3.3.2 Calculations of Padé Approximants

We now proceed to calculate and analyze the Padé approximants to the n-
loop beta function for this SQCD theory. As before with the SYM theory,
since our analysis concerns the behavior away from the UV fixed point at
α = 0, it is convenient to deal with the reduced beta function defined by
(173). Because the beta function βα is known up to three-loop order, the
reduced beta function has the form

βα,rd,3` = 1 + (b2/b1)a+ (b3/b1)a
2 . (201)

Since G = SU(Nc), it follows that CA = Nc and the variable x in Eq. (165)
has the explicit form

x ≡ aNc ≡
ξ

4π
. (202)
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In general, the beta function and hence the Padé approximants to it
depend on the two parameters Nc and Nf . It is natural to apply the Padé
analysis to address the question of how the properties of the beta function
calculated in the DR scheme compare with those of the NSVZ beta function
in the simplest context, namely the limit where the (appropriately scaled)
beta function depends on only one variable. This is the ’t Hooft-Veneziano
or LNN (Large Nc and Nf ) limit

LNN : Nc →∞, Nf →∞,

with r ≡ Nf

Nc

fixed and finite (203)

with x(µ) = a(µ)Nc a finite function of the Euclidean scale µ.
Our constraint of asymptotic freedom implies r < 3. We divide our

analysis into two parts corresponding to two subdivisions of this interval,
namely the NACP interval

Ir,NACP :
3

2
< r < 3 , (204)

where the UV to IR evolution leads to a non-Abelian Coulomb phase without
any spontaneous chiral symmetry breaking, and the remaining interval 0 <
r < 3/2. In addition to simplifying the analysis of the beta function from
dependence on variables to two to one variable, the LNN limit has the appeal
that the interval (204) in which the two-loop beta function has an IR zero
coincides with the interval leading to a non-Abelian Coulomb phase. This is
in contrast to the situation for general Nc and Nf , in which b2 vanishes in
the interior of the NACP.

In the LNN limit, one focuses on the scaled beta function, which is finite
in this limit. For this we use the same notation, βx, as in Eq. (166), with it
being understood that the LNN limit is taken, so that

βx = lim
LNN

dx

dt
, (205)

equivalent to βξ = dξ
dt

. The function βx has the expansion (171) with

b̂` ≡ lim
LNN

b`
N `
c

. (206)
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As before, we denote the n-loop truncation of Eq. (205) as βx,n`, and, where
appropriate, we indicate the scheme used for loop order n ≥ 3 by a sub-
script, as βx,n`,DR. From Eqs. (150) and (151), it follows that the scheme-
independent scaled coefficients are

b̂1 = 3− r (207)

and
b̂2 = 2(3− 2r) . (208)

From the expression (152) for b3 calculated in the DR scheme, one has

b̂3 = 21− 21r + 4r2 . (209)

Thus,

βx,3`,DR = −2x2
[
(3− r) + 2(3− 2r)x+ (21− 21r + 4r2)x2

]
, (210)

and hence

βx,rd,3`,DR = 1 +
b̂2

b̂1
x+

b̂3

b̂1
x2

= 1 + 2
(3− 2r

3− r
)
x+

(21− 21r + 4r2

3− r
)
x2 . (211)

It will be convenient to define

Ds = −b̂3 = −21 + 21r − 4r2 . (212)

This polynomial Ds has the property that

Ds > 0 for
1

8
(21−

√
105 ) < r <

1

8
(21 +

√
105 ) , (213)

i.e., for 1.3441 < r < 3.9059, which includes all of the interval Ir,NACP . (If r
lies outside of the interval in Eq. (213), then Ds < 0.)

We recall from [31, 32, 34] that if the two-loop beta function has an IR
zero, then, since this is a scheme-independent property, one may require a
physically acceptable scheme to maintain the existence of this IR zero at loop
level n ≥ 3 and the condition that it should maintain it at the three-loop level
implies that b3 < 0 (see the proof in Section II.E of [31]). This condition is
thus satisfied by the DR scheme, since b̂3 < 0 for the interval Ir,NACP , where
βx,2` has an IR zero.

59



3.3.3 Analysis for Interval r ∈ Ir,NACP
IR Zero of βx,rd,2` At the two-loop level, βx,rd,2` has a (scheme-independent)
IR zero at

xIR,2` =
ξIR,2`

4π
=

(3− r)
2(2r − 3)

, (214)

which is physical for 3/2 < r < 3, i.e., for r ∈ Ir,NACP . The value of xIR,2`
increases monotonically from 0 to arbitrarily large values as r decreases from
3 to 3/2 in the interval INACP . Clearly, for the values of r in the lower part
of this interval, where xIR,2` becomes large, the perturbative calculation that
yielded the expression for xIR,2` cannot be reliably applied.

IR Zero of βx,rd,3`,DR At the three-loop level, βx,rd,3`,DR has an IR zero at
[32, 33]

xIR,3` =
−(2r − 3) +

√
Cs

Ds

, (215)

where
Cs = −54 + 72r − 29r2 + 4r3 . (216)

The polynomial Cs has only one real zero, at r = 1.3380, and is positive
(negative) for r greater (less) than this value. Thus, Cs is positive for all
r ∈ Ir,NACP . Since b̂3 < 0 for r ∈ Ir,NACP , it follows that

xIR,3` ≤ xIR,2` , (217)

as a special case of an inequality that was proved in [31] (see Eq. (2.29) of
[31]). The inequality (217) is a strict inequality except at the upper end of
Ir,NACP at r = 3, where both xIR,3` and xIR,2` vanish.

Analysis of IR Zero Using Padé Approximants For r ∈ Ir,NACP ,
where the beta function has an IR zero, we address and answer the following
set of questions concerning the comparison of the three-loop beta function
calculated in the DR scheme, the Padé approximants to it, and the NSVZ
beta function:

1. Considering (i) the n-loop beta function and (ii) the [p, q] Padé approx-
imants to this beta function with p 6= 0, do these exhibit a physical IR
zero?

60



2. If (i) the n-loop beta function and (ii) the [p, q] Padé approximant to
this beta function with p 6= 0 do exhibit a physical IR zero, does this
IR zero dominate the UV to IR evolution? This is the case if and only
if this IR zero occurs closer to the origin x = 0 than a physical IR pole
(if the latter is present in a [p, q] Padé with q 6= 0 ).

3. In each of the cases (i) and (ii), if the answers to the previous two
questions are affirmative, then is the value of the IR zero close to the
value xIR,cfs,NSV Z in βx,rd,NSV Z , given in Eq. (232)?

4. In each of the cases (i) and (ii), if the answers to questions 1 and 2
are affirmative, then, independent of the closeness of the IR zero to
xIR,cfs,NSV Z , are the values at least close to each other?

5. For the [p, q] Padé approximants with q 6= 0, if there is a physical pole,
is its location near to the value x = 1/2 in the NSVZ beta function?

We recall that the [p, 0] = [n − 1] Padé approximant is identical to the
reduced n-loop beta function βx,rd,n`, as noted above in Eq. (183). As a spe-
cial case of this, the two-loop reduced beta function βx,rd,2` yields only one
Padé approximant with a zero, namely [1,0], which coincides with βx,rd,2`,
itself, so no further analysis is necessary. The three-loop reduced beta func-
tion βx,rd,3`,DR yields two Padé approximants with p 6= 0, namely [2,0] and
[1,1]. The [2,0] approximant coincides with βx,rd,3`,DR, which has already
been analyzed. We calculate the [1,1] approximant to be

[1, 1]βx,rd,3` =
1−

[
Es

2(3−r)(2r−3)

]
x

1−
[

Ds

2(2r−3)

]
x

, (218)

where
Es = −27 + 36r − 17r2 + 4r3 . (219)

The polynomial Es has only one real zero, at r = 1.3118 and is positive
(negative) for r greater (less) than this value. Therefore, Es is positive for
all r ∈ Ir,NACP . As r decreases from 3 to 3/2, Es decreases from 36 to 9/4.
Thus, the [1, 1]β

x,rd,3`,DR
Padé approximant has a zero at

x[1,1],zero =
2(3− r)(2r − 3)

Es
. (220)
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This is positive semidefinite for all r ∈ Ir,NACP ; it vanishes at both ends of
this interval and reaches a maximum at r = 1.8321 (a zero of the function
81− 198r + 189r2 − 72r3 + 8r4), where it has the value x[1,1],zero = 0.23898.
In order for x[1,1],zero to be relevant for the UV to IR evolution of the theory
(from weak coupling in the UV), it is necessary that if this Padé approximant
has a pole at a physical value of x, then this pole must occur farther from
the origin than the zero. Below, when we analyze poles of the various Padé
approximants, we will show that this condition is satisfied (although the
distance between the zero and the pole vanishes as r ↘ 3/2). We thus
denote

x[1,1],zero = xIR,3`,[1,1] . (221)

We prove two inequalities. First,

xIR,3`,[1,1] ≤ xIR,2` for r ∈ Ir,NACP . (222)

This is proved by computing the difference

xIR,2` − xIR,3`,[1,1] =
(3− r)2Ds

2(2r − 3)Es
. (223)

This difference is positive semidefinite for r ∈ Ir,NACP , vanishing only as
r ↗ 3 at the upper end of this interval.

Second, we obtain the stronger inequality

xIR,3`,[1,1] ≤ xIR,3` for r ∈ Ir,NACP . (224)

(This is a stronger inequality since xIR,3` ≤ xIR,2`, by (217).) We have
proved the inequality (224) by calculating the difference, xIR,3` − xIR,3`,[1,1]
and showing that it is positive semidefinite for r ∈ Ir,NACP , vanishing only
at r = 3. Combining these inequalities, we have

xIR,3`,[1,1] ≤ xIR,3` ≤ xIR,2` for r ∈ Ir,NACP , (225)

with equality only at r = 3, where all three terms in the inequality vanish.

IR Zero from NSVZ Beta Function Applying the LNN limit to the
NSVZ beta function (159) and calculating the resultant βx in Eq. (205), we
obtain

βx,NSV Z,LNN = −2x2
[
3− r(1 + γm)

1− 2x

]
. (226)
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Here,

γm =
∞∑
`=1

ĉ`x
` , (227)

where the maximal scheme-independent coefficient in γm is the one-loop co-
efficient

ĉ1 = 2 . (228)

In terms of the closed-form (cf) and series (s) functions defined in [34], this
beta function can be expressed as

βx,NSV Z = −2x2b̂1 fx,cf,NSV Z fx,s,NSV Z , (229)

where

fx,cf,NSV Z =
1

1− 2x
(230)

and
fx,s,NSV Z = 1− rγm

b̂1
= 1− rγm

3− r
, (231)

where here the subscript s connotes the dependence on the series (227) for
γm.

There are different approaches to calculating the IR zero of βx,NSV Z . If
one expands it in a series in x around x = 0 and calculates the resultant zero,
one necessarily reproduces the one-loop and two-loop results obtained start-
ing from the original series expansion, since these are scheme-independent.
This analysis was carried out in [31, 32, 33]. An alternate approach proposed
and analyzed in [34] is to incorporate the information obtained from the sum-
mation to infinite-loop order that yields the structure in Eqs. (229)-(231).
Since the factor fx,cf,NSV Z has no zero, one thus calculates the IR zero as the
zero in fx,s,NSV Z . Substituting the expansion of γm to its maximal scheme-
independent order γm = 2x, one thus solves the equation 1−2rx/(3−r) = 0,
obtaining

xIR,NSV Z =
ξIR,NSV Z

4π
=

3− r
2r

, (232)

As r decreases from 3 to 3/2 in the interval Ir,NACP , this IR zero, xIR,NSV Z ,
increases from 0 to 1/2. The IR zero xIR,NSV Z has much better behavior than
xIR,2` in that it increases to a finite value as r decreases to the lower end of the
interval Ir,NACP , while xIR,2` diverges at this lower boundary of Ir,NACP . (As
noted above, this divergence is only formal, since the perturbative calculation
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that yielded the expression for xIR,2` ceases to apply when the value of x
becomes too large.)

In order for the IR zero xIR,NSV Z to be relevant to the UV to IR evolution
of the theory, it is necessary and sufficient that this IR zero of the beta
function should occur closer to the origin than the pole in βx,NSV Z , which
occurs at x = 1/2, as given in Eq. (179). The requisite condition

xIR,NSV Z ≤ xpole,NSV Z for
3

2
< r < 3 (233)

is satisfied, since, as we have observed above, xIR,NSV Z < 1/2 in this in-
terval, 3/2 < r ≤ 3. As r approaches the lower boundary of Ir,NACP at
r = 3/2, xIR,NSV Z approaches xpole,NSV Z from below. The inequality (233)
is a strict inequality except at the single point r = 3, where both xIR,NSV Z
and xpole,NSV Z vanish.

As r decreases below 3/2 in the interval 0 < r < 3/2, xIR,NSV Z increases
monotonically above 1/2. Thus, for 0 < r < 3/2, this IR zero at xIR,NSV Z
occurs farther from the origin x = 0 than the IR pole in βx,NSV Z at x = 1/2
and hence is not directly relevant to the UV to IR evolution of the theory
from weak coupling.

We next prove some additional inequalities. First,

xIR,NSV Z ≤ xIR,2` for r ∈ Ir,NACP . (234)

This is proved by calculating the difference, which is

xIR,2` − xIR,NSV Z =
(3− r)2

2r(2r − 3)
. (235)

This is evidently positive-semidefinite, vanishing only at the upper end of
the interval Ir,NACP at r = 3, where both xIR,2` and xIR,NSV Z vanish. Next,
we obtain the stronger inequality,

xIR,NSV Z ≤ xIR,3` for r ∈ Ir,NACP , (236)

with equality only at r = 3, where both xIR,NSV Z and xIR,3` both vanish.
This is again proved by calculating the difference:

xIR,3` − xIR,NSV Z =
63− 78r + 29r2 − 4r3 + 2r

√
Cs

2rDs

. (237)
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The denominator of this expression is positive for r ∈ Ir,NACP . In the numer-
ator, although the polynomial 63−78r+29r2−4r3 is negative for r ∈ Ir,NACP ,
it is smaller in magnitude than the second term, 2r

√
Cs, so the numerator

is positive semidefinite in this interval, vanishing only at the upper end, at
r = 3.

Comparing xIR,NSV Z with xIR,3`,[1,1], we find that

xIR,3`,[1,1] − xIR,NSV Z =
(3− r)2(r − 1)(4r − 9)

2rEs
. (238)

Therefore, the relative size of xIR,NSV Z and xIR,3`,[1,1] is reversed between
upper and lower subsections of the interval Ir,NACP :

xIR,NSV Z ≤ xIR,3`,[1,1] if 2.25 ≤ r ≤ 3 (239)

(with equality only at x = 2.25 and r = 3), while

xIR,NSV Z > xIR,3`,[1,1] if 1.5 < r < 2.25 . (240)

We summarize these results in Table 7. The entries in Table 7 for xIR,n`
with n = 2, 3 are equivalent to the entries for ξIR,n` = 4πxIR,n` with n = 2, 3
given in Table VII of [31]; the entries for xIR,3`,[1,1] are new here. As is evident,
the numerical results in Table 7 obey the general inequalities (222) and (224)
that we have proved above, as well as the inequality (217) proved in [31].

Poles of Padé Approximants Here we investigate the poles of the Padé
approximants to βx,rd,2` and βx,rd,3`,DR in order to answer the questions posed
above. At the two-loop level, from βx,rd,2` we can obtain one [p, q] Padé
approximant with q 6= 0, namely

[0, 1]βx,rd,2` =
1

1 +
[
2(2r−3)
3−r

]
x
. (241)

This has a pole at

x[0,1]pole = −
[

3− r
2(2r − 3)

]
. (242)

Since we are considering r ∈ INACP , i.e., 3/2 ≤ r ≤ 3, this occurs at negative
x and hence is unphysical. As a special case of the general result (184), we
have x[0,1]pole = −xIR,2`. So the fact that xIR,2` is physical guarantees that
this pole is irrelevant.
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Table 7: Values of the IR zero of the beta function in the LNN limit of the SQCD theory,
as a function of r ∈ Ir,NACP . The entries in the columns are: (i) xIR,2`, IR zero of the
2-loop beta function βx,2`, (ii) xIR,3`, IR zero of the 3-loop beta function βx,3`,DR, (iii) the

IR zero calculated from the Padé approximant [1,1] to βx,3`,DR, and (iv) xIR,cfs obtained
from βx,NSV Z . Since xIR,2` formally diverges as r ↘ 1.5, the perturbative calculation is
not applicable (NA) there.

r xIR,2` xIR,3` xIR,3`,[1,1] xIR,cfs,NSV Z
1.5 NA 1.000 0.000 0.500
1.6 3.500 0.690 0.162 0.438
1.7 1.625 0.529 0.220 0.382
1.8 1.000 0.424 0.238 0.333
1.9 0.6875 0.349 0.236 0.289
2.0 0.500 0.290 0.222 0.250
2.1 0.375 0.242 0.202 0.214
2.2 0.286 0.201 0.179 0.182
2.3 0.219 0.166 0.154 0.152
2.4 0.167 0.135 0.129 0.125
2.5 0.125 0.107 0.104 0.100
2.6 0.0909 0.0811 0.0801 0.0769
2.7 0.0625 0.0579 0.0576 0.05555
2.8 0.0385 0.0368 0.0367 0.0367
2.9 0.0179 0.0175 0.0175 0.0172
3.0 0 0 0 0
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We next proceed to the three-loop level. From βx,rd,3`,DR we can obtain
two [p, q] Padé approximants with q 6= 0. The first is the [1,1] approximant,
given in Eq. (218). This has a pole at

x[1,1]pole =
2(2r − 3)

Ds

. (243)

We list values of x[1,1]pole as a function of r in Table 8. As r decreases from 3 to
3/2 in the interval Ir,NACP , the position of this pole decreases monotonically
from 1 to 0. For a given r ∈ Ir,NACP , this pole occurs farther from the
origin than the zero, i.e. x[1,1]pole ≥ x[1,1]zero . We show this by calculating the
difference,

x[1,1]pole − x[1,1]zero =
8(2r − 3)3

DsEs
. (244)

The right-hand side of (244) is positive for 3/2 < r ≤ 3 in I and vanishes as
r decreases to 3/2 at the lower end of this interval I. Thus, the [1, 1]βx,rd,3`
approximant exhibits a physical zero closer to the origin than the pole, and
hence the pole is not relevant to the UV to IR evolution described by this
Padé approximant. This irrelevance of the pole is similar to what we found
for the [0, 1]βx,rd,2` Padé approximant; indeed in that case, the pole occurred
at an unphysical, negative value of x. The confluence of the pole and the
zero of the [1, 1]βx,rd,3` approximant as r ↘ 3/2 in I reflects the fact that as
r ↘ 3/2, [1, 1]x,rd,3` → 1, independent of x.

For the analysis of an IR zero, as was carried out in [33, 32, 34], the [0,2]
Padé is not of interest, since it cannot reproduce an IR zero that is present
in the analysis of βx,rd,3`,DR. However, it is of interest for the questions that
we address in this subsection. We calculate

[0, 2]βx,rd,3` =
1

1 +
[
2(2r−3)
3−r

]
x+

[
Es

(3−r)2
]
x2

.

(245)

Since the coefficients of both the x and x2 terms in the denominator of
[0, 2]βx,rd,3` are positive, this approximant clearly has no pole for physical
(non-negative) x. Explicitly, the poles in [0, 2]βx,rd,3` occur at

x[0,2],pole =
(3− r)

[
− (2r − 3)±

√
Fs

]
Es

, (246)
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Table 8: Values of the IR pole(s) of the [p, q] Padé approximants, with q = 1 and q = 2,
to βx,2` and βx,3`,DR, as functions of r, in the LNN limit of the SQCD theory. The entries

in the columns are (i) x[0,1]pole , pole of [0,1] approximant to βx,rd,2`; (ii) x[1,1]pole , pole of
[1,1] approximant to βx,rd,3`,DR; (iii) {x[0,2]pole}, poles of [0,2] approximant to βx,rd,3`,DR.

r x[0,1]pole x[1,1]pole {x[0,2]pole}
0.0 0.500 0.286 −1, 0.333
0.1 0.518 0.296 −1.034, 0.345
0.2 0.538 0.307 −1.070, 0.358
0.3 0.5625 0.319 −1.109, 0.373
0.4 0.591 0.332 −1.150, 0.390
0.5 0.625 0.348 −1.195, 0.410
0.6 0.667 0.366 −1.245, 0.434
0.7 0.719 0.387 −1.304, 0.463
0.8 0.786 0.414 −1.376, 0.500
0.9 0.875 0.449 −1.473, 0.549
1.0 1.000 0.500 −1.618, 0.618
1.1 1.1875 0.584 −1.876, 0.727
1.2 1.500 0.769 −2.519, 0.940
1.3 2.125 1.739 −11.368, 1.790
1.4 4.000 −0.7143 0.303± 1.527i
1.5 ∞ 0 ±i
1.6 −3.500 0.1695 −0.0808± 0.748i
1.7 −1.625 0.255 −0.110± 0.588i
1.8 −1.000 0.3125 −0.119± 0.473i
1.9 −0.6875 0.359 −0.118± 0.385i
2.0 −0.500 0.400 −0.111± 0.314i
2.1 −0.375 0.440 −0.101± 0.256i
2.2 −0.286 0.479 −0.0895± 0.208i
2.3 −0.219 0.521 −0.0770± 0.167i
2.4 −0.167 0.566 −0.0644± 0.132i
2.5 −0.125 0.615 −0.0519± 0.101i
2.6 −0.0909 0.671 −0.0400± 0.0753i
2.7 −0.0625 0.734 −0.0288± 0.0526i
2.8 −0.0385 0.807 −0.0184± 0.0328i
2.9 −0.0179 0.895 −0.00875± 0.0154i
3.0 0 1 0
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where
Fs = 36− 48r + 21r2 − 4r3 . (247)

The polynomial Fs has only one real zero, at r = 1.3223, and is positive
(negative) for r less (greater) than this value. Hence, Fs is negative for all
r ∈ Ir,NACP . We list values of x[0,2],pole as a function of r in Table 8.

These results answer the five questions that we posed above. The answer
to the first question is yes, the quantities βx,rd,2` = [1, 0]βx,rd,2` , βx,rd,3` =
[2, 0]β

x,rd,3`,DR
, and [1, 1]β

x,rd,3`,DR
all exhibit (physical) IR zeros. This property

is in agreement with existence of an IR in the NSVZ beta function for r ∈
Ir,NACP . Second, in each case, the respective IR zero controls the UV to IR
evolution, and this again agrees with the NSVZ beta function. Actually, the
only case to check is the [1, 1]β

x,rd,3`,DR
Padé approximant, for which we have

proved that the pole is always farther from the origin than the IR zero. This
is also evident from an inspection of the entries for zeros and poles in Tables
7. and 8.

Concerning the third and fourth questions, for r in the upper part of the
interval Ir,NACP , where the IR zero in the n-loop beta function occurs at a
rather small value, one expects that the values of this IR zero calculated from
this beta function itself, from the Padé approximants to the (reduced) beta
function, and from the NSVZ beta function should agree, and this expecta-
tion is borne out by the results, as listed in Table 7. For example, for the
illustrative value r = 2.5, xIR,2` = 0.125, xIR,3` = 0.107, xIR,3`,[1,1] = 0.104,
and xIR,NSV Z = 0.100. Aside from the lowest-order, two-loop value, the last
three values of the IR zero are quite close to each other. As r decreases in the
interval Ir,NACP , the differences tend to grow somewhat. Thus, for r = 2.0,
xIR,2` = 0.500, xIR,3` = 0.290, xIR,3`,[1,1] = 0.222, and xIR,NSV Z = 0.250.
Again, aside from the lowest-order, two-loop value, the last three values are
within about 10 % of each other.

Finally, concerning the fifth question, pertaining to the pole in the [p, q]
Padé approximants with q 6= 0, one should remark at the outset that since
this pole occurs farther from the origin than the IR zero, it does not directly
affect the evolution from weak coupling in the UV to the IR, so its precise
value is not directly relevant for this evolution. The values of the pole posi-
tion from the [0, 1], [1, 1] and [0, 2] Padé approximants are listed in Table 8.
As discussed in connection with Eq. (184), given the fact that the series ex-
pansion of the NSVZ beta function must agree with the DR to two-loop order
and given the identity (184), it follows that since the two-loop beta function
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(equivalently, the [1,0] Padé) has a physical IR zero, the pole in the [0,1] Padé
approximant to βx,r,2` must occur at a negative and hence unphysical value
of x. At the three-loop level, the two relevant two Pad’e approximants, [1,1]
and [0,2] have poles at different values of x, and only one, namely [1,1], has
a pole at a physical value of x. Furthermore, the position of this pole varies
as a function of r, decreasing from 1 at r = 3 to 0 at r = 3/2, in contrast
to the pole in βx,NSV Z , which has a fixed value at xpole,NSV Z = 1/2. More
generally, even the unphysical poles in the [0,1] and [0,2] Padé approximants
vary considerably as functions of r. Thus, these Padé approximants do not
exhibit evidence of a stable pole. Of course, these results do not preclude the
possibility that if the beta function in the DR scheme could be calculated
to higher order, one might begin to see evidence of a stable pole in the [p, q]
Padé approximants with q 6= 0.

3.3.4 Analysis for 0 < r < 3/2

In this interval of r, b̂1 and b̂2 have the same sign, so the two-loop beta func-
tion does not have any IR zero, and this is the maximum scheme-independent
information that one has concerning the IR zero. Hence, using this two-loop
beta function, one infers that as the scale µ decreases from the deep UV to
the IR, the gauge coupling continuously increases, eventually exceeding the
region where one can use perturbative methods to calculate it reliably. For-
mally, the three-loop beta function calculated in the DR scheme continues to
exhibit an IR zero, xIR,3`,DR, given in Eq. (215), for a small interval of r below
3/2. However, one cannot take this to be a physically compelling result, in
view of the fact that the maximal scheme-independent information available
(from the two-loop beta function) does not exhibit any IR zero. Furthermore,
as r decreases from 3/2 to the zero of Ds at r = (21−

√
105 )/8 = 1.3441 (see

Eq. (213)), xIR,3`,DR grows without bound, so that one can ignore it, since
the value of the IR zero is beyond the regime where one would consider per-
turbation theory to be reliable. Indeed, as is evident from the expression for
[1, 1]zero in Eq. (221), the [1,1] Padé approximant to βx,r,3`,DR ceases to have
a physical IR zero as r decreases through 3/2. The absence of a (physical)
IR zero from a perturbatively reliable calculation using the beta function in
the DR scheme for 0 < r < 3/2 is in agreement with the prediction from the
NSVZ beta function; as discussed above, for r in the interval 0 < r < 3/2, the
formal zero at xIR,NSV Z lies farther from the origin than the pole at x = 1/2
and hence is not directly relevant to the UV to IR evolution of the theory.
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We proceed to address and answer the following questions for this interval
0 ≤ r < 3/2:

1. Do the [p, q] Padé approximants with q 6= 0 exhibit a physical pole?

2. If the answer to the first question is affirmative, then does this pole
occur closer to the origin than any IR zero (if such a zero is present)
and hence dominate the UV to IR evolution of the theory?

3. If the answers to the first two questions are affirmative, then is this IR
pole close to the value xpole,NSV Z = 1/2 of the pole in the NSVZ beta
function?

4. If the answers to the first two questions are affirmative, then, indepen-
dent of whether the poles in different [p, q] Padé approximants with
q 6= 0 are close to xIR,NSV Z = 1/2, do these different approximants at
least exhibit a stable (physical) pole?

In the present case, the relevant Padé approximants are [0,1], [1,1], and
[0,2]. As is clear from the explicit expressions for these approximants and
their poles given above, the poles do not occur at a fixed value of x and
are not, in general, equal to xIR,NSV Z . As is evident from (242), the pole
in the [0,1] Padé approximant to βx,r,2` occurs at x = 1/2 only if r = 0 and
increases monotonically without bound as r increases from 0 to 3/2. The
pole in the [1,1] Padé approximant to βx,r,3`,DR increases monotonically as
a function of r from 0.286 at r = 0 and diverges as r approaches the value
(21−

√
105 )/8 = 1.3441 from below. In the small interval 1.3441 < r < 3/2,

this pole occurs at negative x and hence is unphysical. Only at the value
r = 1 is the position of this pole in the [1,1] Padé equal to 1/2. The [0,2] Padé
approximant to βx,r,3`,DR has two poles, one of which is always unphysical.
The other pole of the [0,2] Padé occurs at an r-dependent value that increases
from 1/3 at r = 0 and diverges as r approaches the zero in Es at r = 1.3118
from below. It is negative for r in the small interval 1.3118 < r < 1.3223,
where r = 1.3223 is the point where Fs has a zero; finally, in the small interval
1.3223 < r < 3/2, it is complex. This pole in the [0,2] Padé is approximately
equal to 1/2 for r = 0.8.

These results provide answers to the questions stated above. The answer
to the first question is that over much of the interval 0 ≤ r < 3/2, the [0,1],
[1,1], and [0,2] Padé approximants do exhibit physical poles, but these all vary
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as functions of r and are not stable at any particular fixed value. Second,
since there is no robust, scheme-independent IR zero in the beta function,
these poles do dominate the UV to IR evolution. Third, the values of the
poles in the various Padé approximants exhibit some scatter and are not, in
general, equal to (the r-independent) value xIR,NSV Z = 1/2. Concerning the
fourth question, although the pole in the [0,1] Padé is not very close to the
pole in the [1,1] Padé or the physical pole in the [0,2] Padé, the latter two
poles are in fair agreement with each other. For example (see Table 8) over
much of the interval 0 ≤ r < 3/2, the ratio of the physical pole in the [0,2]
Padé divided by the pole in the [1,1] Padé is about 1.2, which is reasonably
close to unity. One may interpret this as indicating that, at least for the
three-loop beta function calculated in the DR scheme for this theory, there
is rough agreement, at about the 20 % level, between the pole in the [1,1]
Padé approximant and the physical pole in the [0,2] Padé approximant.

3.4 Chiral Superfields in Symmetric and Antisymmet-
ric Rank-2 Tensor Representations

3.4.1 Beta Function and IR Zeros

Here we consider a (vectorial, asymptotically free) N = 1 supersymmetric
SU(Nc) gauge theory with Nf copies of massless chiral superfields Φi and
Φ̃i, i = 1, ..., Nf , transforming according to the symmetric and antisym-
metric rank-2 tensor representations and their conjugates. We denote these
symmetric and antisymmetric rank-2 tensor representations as S2 and A2,
respectively. While the S2 theory is defined for all Nc ≥ 2, the A2 theory is
defined for Nc ≥ 3, since the A2 representation is a singlet if Nc = 2. We
restrict our consideration to values Nf 6= 0 here, since if Nf = 0, the present
theory reduces to a pure supersymmetric Yang-Mills gauge theory, which we
have already analyzed above. The one-loop and two-loop coefficients in the
beta function are (e.g., [33])

b1 = 3Nc − (Nc ± 2)Nf , (248)

and
b2 = 2

[
3N2

c (1−Nf )∓ 8(Nc −N−1c )Nf

]
. (249)

where the upper and lower signs apply for the S2 andA2 theories, respectively.
Evaluating Eq. (152), we obtain, for b3 in the DR scheme,

b3 = 7N3
c (Nf − 1)(Nf − 3)± 2N2

cNf (−33 + 17Nf )
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+ 8NcNf (1 + 5Nf )∓ 24Nf (Nf − 1)

− 16N−1c Nf (2 + 3Nf )± 64N−2c Nf . (250)

It will often be convenient to refer to these two cases together as T2 (standing
for tensor, rank-2) with the above sign convention, and we shall do so. The
one-loop coefficient decreases with increasing Nf and passes through zero
with sign reversal for Nf = Nf,b1z,T2 , where

Nf,b1z,T2 =
3Nc

Nc ± 2
. (251)

In the S2 theory, Nf,b1z,S2 increases monotonically from 3/2 for Nc = 2 ,
approaching the limiting value 3 from below as Nc → ∞, while in the A2

theory, Nf,b1z,A2 decreases monotonically from 9 for Nc = 3, approaching
the limiting value 3 from above as Nc → ∞. The two-loop coefficient also
decreases with increasing Nf and passes through zero with sign reversal for
Nf = Nf,b2z,T2 , where

Nf,b2z,T2 =
3N2

c

3N2
c ± 8(Nc −N−1c )

. (252)

From the exact results recalled above, it follows that the lower boundary
of the IR non-Abelian Coulomb phase is

Nf,cr,T2 =
Nf,b1z,T2

2
=

3Nc

2(Nc ± 2)
. (253)

In the S2 theory, Nf,cr increases monotonically from 3/4 for Nc = 2, ap-
proaching 3/2 from below as Nc →∞, while in the A2 theory, Nf,cr decreases
monotonically from 9/2 for Nc = 3, approaching 3/2 from above as Nc →∞.
Hence, the IR non-Abelian Coulomb phase exists for (integral) Nf values in
the interval

INACP,(S2,A2 :
3Nc

2(Nc ± 2)
< Nf <

3Nc

Nc ± 2
. (254)

In the S2 theory, as noted in [33], Nf,b2z,S2 < Nf,cr,S2 , so b2 < 0 if Nf is in the
non-Abelian Coulomb interval (254). In the A2 theory, Nf,b2z,A2 < Nf,cr,A2 if
Nf = 1 or Nf = 2, while Nf,b2z,A2 > Nf,cr,A2 if Nf = 3.

Assuming that Nf is in the respective ranges where b2 < 0 in the S2 and
A2 theories, the theory has an IR zero in the beta function at the two-loop
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level, occuring at aIR,2`,T2 = −b1,T2/b2,T2 , i.e.,

aIR,2`,T2 =
3Nc − (Nc ± 2)Nf

2[3N2
c (Nf − 1)± 8(Nc −N−1c )Nf ]

. (255)

As noted above, this two-loop result is scheme-independent. To calculate the
IR zero of the NSVZ beta function using the corresponding maximal scheme-
independent information in γm, we use Eq. (161) for the one-loop term in
γm and thus solve the equation b1,T2 − 2NfTfc1a = 0, obtaining the result

aIR,NSV Z,T2 =
Nc[Nc(3−Nf )∓ 2Nf ]

4Nf (Nc ± 2)2(Nc ∓ 1)
. (256)

To analyze the extent to which the perturbative beta functions of the S2

and A2 theories, calculated in the DR scheme, exhibit similarities with the
NSVZ beta function, we proceed to consider these functions at the three-
loop level. To carry out this analysis, we focus on the case Nc → ∞ and
again work with the scaled beta function βx = dx/dt. In this limit, the
beta functions βx,S2 and βx,A2 and for the S2 and A2 theories become the
same, and we shall denote the resulting beta function as βx,T2 . Similarly, the
intervals given in Eq. (254) also become the same, reducing to

INACP,T2 :
3

2
< Nf < 3 for Nc →∞ (257)

Hence, the interval INACP,T2 contains only one physical, integral value of Nf

in this limit, namely Nf = 2.
With the definition (326), we have, for the (scheme-independent) one-loop

and two-loop rescaled coefficients b̂`, the results

b̂1,T2 = 3−Nf , (258)

and
b̂2,T2 = −6(Nf − 1) . (259)

Note that b̂2,T2 vanishes for Nf = 1, so that the two-loop beta function has
no IR zero for this value of Nf .

In general, the IR zero of the rescaled two-loop beta function βx,T2 is

xIR,T2 = − ˆb1,T2/b̂2,T2 , i.e.,

xIR,2`,T2 =
3−Nf

6(Nf − 1)
. (260)
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The only value of Nf for which this has a finite, nonzero value is Nf = 2, and
for Nf = 2, xIR,2`,T2 = 1/6. In this limit, the rescaled NSVZ beta function
βx,NSV Z,T2 has an IR zero at

xIR,NSV Z,T2 =
3−Nf

4Nf

. (261)

For Nf = 2, this has the value

xIR,NSV Z,T2 =
1

8
for Nf = 2 . (262)

In the DR scheme, the three-loop coefficient in βx,T2 is

b̂3,T2 = −7(Nf − 1)(3−Nf ) . (263)

Hence, if Nf = 1, the three-loop beta function in the DR scheme is the same
as the (scheme-independent) two-loop beta function, in which the two-loop
coefficient also vanishes. Thus, if Nf = 1 here, the beta function reduces
simply to the one-loop term, which has no IR zero.

The three-loop beta function, βx,3`,T2 , for the S2 and A2 theories in this

limit, with b̂3 calculated in the DR scheme, is

βx,3`,T2 = −2x2(b̂1,T2 + b̂2,T2x+ b̂3,T2x
2) . (264)

From Eq. (173), it follows that the reduced three-loop beta function βx,rd,3`,T2
is

βx,rd,3`,T2 = 1 +
b̂2,T2

b̂1,T2
x+

b̂3,T2

b̂1,T2
x2

= 1− 6(Nf − 1)

3−Nf

x− 7(Nf − 1)x2 . (265)

If Nf 6= 1 (and Nf 6= 3), the equation βx,rd,3`,T2 = 0 has, formally, two
solutions, given by

xIR,3`,T2,± =
1

7(3−Nf )

[
− 3±

√√√√7N2
f − 33Nf + 54

Nf − 1

]
. (266)

For Nf = 2, the solution with the + sign in front of the square root is equal
to xIR,3`,T2,+ = 1/7 = 0.14286, which is reasonably close to the NSVZ result
of 1/8 given in Eq. (262). (The solution with the minus sign in Eq. (266)
has the unphysical negative value −1 and hence is not relevant.)
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Table 9: Values of zeros and poles, in the variable x, of Padé approximants to βx,rd,2`
and βx,rd,3`,DR for the N = 1 supersymmetric gauge theory with Nf = 2 copies of chiral
superfields in the symmetric or antisymmetric rank-2 tensor representation and its con-
jugate, in the limit Nc → ∞. Results are given to the indicated floating-point accuracy.
The abbreviation NA means “not applicable”.

n [p, q] zero(s) pole(s)
2 [1,0] 1/6 = 0.167 NA
2 [0,1] NA −1/6 = −0.167
3 [2,0] −1, 1/7 = 0.143 NA
3 [1,1] 6/43 = 0.1395 6/7 = 0.857
3 [0,2] NA −0.0698± 0.1356i

3.4.2 Padé Approximants

We next calculate the Padé approximants to the two-loop and three-loop
reduced beta functions, βx,rd,2`,T2 and βx,rd,3`,T2 , respectively. As before, these
functions are identical to the [1,0] and [2,0] approximants, respectively, so our
analysis given above of the zeros of βx,rd,2`,T2 and βx,rd,3`,T2 applies to these
approximants. We list these results in Table 9 and proceed to calculate and
analyze the [p, q] approximants with q 6= 0. With βx,rd,2`,T2 we can only
calculate one [p, q] approximant with q 6= 0, namely the [0,1] approximant.
We find

[0, 1]βx,rd,2`,T2 =
1

1 +
6(Nf−1)
3−Nf

x
. (267)

Thus, as a special case of the relation (184), this Padé approximant has a
pole at

[0, 1]T2,pole = −[1, 0]T2,zero = −xIR,2`,T2

= − (3−Nf )

6(Nf − 1)
. (268)

For Nf = 2,, this pole occurs at x = −1/6.
At the three-loop level, assuming that Nf 6= 1 (where the three-loop and

two-loop coefficients vanish), we calculate, for the [1,1] approximant, the
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result

[1, 1]βx,rd,3`,T2 =
1− (7N2

f−6Nf+27)

6(3−Nf )
x

1− 7(3−Nf )

6
x

. (269)

The fact that b̂2 and b̂3 vanish at Nf = 1 is reflected in the property that this
[1,1] Padé approximant reduces to unity at this value of Nf . For Nf 6= 1,
this approximant has a IR zero at

[1, 1]T2,zero =
6(3−Nf )

7N2
f − 6Nf + 27

. (270)

and a pole at

[1, 1]T2,pole =
6

7(3−Nf )
. (271)

The polynomial 7N2
f − 6Nf + 27 is positive for all (real) Nf . We note the

inequality
[1, 1]T2,zero < [1, 1]T2,pole . (272)

This is proved by calculating the difference,

[1, 1]T2,pole − [1, 1]T2,zero =
63(3−Nf )

7(Nf − 1)(7N2
f − 6Nf + 27)

.

(273)

Evidently, since Nf 6= 0, 1 and Nf < 3, the right-hand side of (273) is
positive-definite. For Nf = 2, we have [1, 1]T2,zero = 6/43 = 0.1395 and
[1, 1]T2,pole = 6/7 = 0.8571. These values are listed in Table 9.

We compute the [0,2] Padé approximant to βx,rd,3`,T2 to be

[0, 2]βx,rd,3`,T2 =
1

1 +
6(Nf−1)
(3−Nf )

x+
(Nf−1)(7N2

f
−6Nf+27)

(3−Nf )2
x2

.

(274)

This has, formally, two poles, at the values

[0, 2]T2,pole =
(3−Nf )

(7N2
f − 6Nf + 27)

[
− 3

±

√√√√−7N2
f + 15Nf − 36

Nf − 1

]
. (275)
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However, recalling that Nf 6= 0, 1, one sees that these poles are both un-
physical, because the polynomial in the square root, −7N2

f + 15Nf − 36, is
negative-definite. Explicitly, for Nf = 2, Eq. (275) yields the pole values
x = (1/43)(−3±

√
34 i ) = −0.0698± 0.1356i, as is listed in Table 9.

Let us summarize our results for these theories with a nonzero number,
Nf , of copies of chiral superfields in the S2 or A2 representation and their
respective conjugates, in the limit Nc → ∞. In this limit, Nf < 3 for
asymptotic freedom. For Nf = 1, the (scheme-independent) two-loop term
in the beta function βx,T2 vanishes, as does the three-loop term with the
latter calculated in the DR scheme, so that the beta function, calculated to
these loop orders, does not contain any IR zero or any indication, via Padé
approximants, of a pole.

For this theory with Nf = 2, our analysis of the two-loop and three-loop
DR beta functions, and the [1,1] Padé approximant to the latter all give
evidence of an IR zero, with respective values 1/6, 1/7, and 6/43=0.1395,
which decrease monotonically, approaching the the value xIR,NSV Z,T2 = 1/8
from the NSVZ beta function. Thus, we find reasonably good agreement
between these IR zeros calculated in different schemes. We come next to
the questions of whether, for this theory, the [p, q] Padé approximants with
q 6= 0 to the two-loop and three-loop beta function give some indication of
a (physical) pole and whether this pole occurs at a value close to the value
x = 1/2 in the NSVZ beta function. Our result is that neither the [0,1] nor
the [0,2] Padé approximants has any physical pole, while the [1,1] Padé does
exhibit a pole, although it is roughly twice the value x = 1/2. As in the
case of the theory containing chiral superfields in the fundamental and anti-
fundamental representations, this suggests that it is necessary to calculate
the beta function in the DR scheme to higher-loop order and calculate higher-
order Padé approximants to test for indications of a pole.
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4 Renormalization-Group Evolution of the Finite-

N Gross-Neveu Model

In this section we discuss our results on the renormalization-group evolution
of the finite-N Gross-Neveu model, which were published in Ref. [4]. We
begin with a review of some background.

The Gross-Neveu (GN) model [72] is a quantum field theory in d =
2 spacetime dimensions with an N -component massless fermion ψj, j =
1, ..., N , defined by the path integral

Z =
∫ ∏

x

[Dψ][Dψ̄] ei
∫
d2xL , (276)

with the Lagrangian density [73]

LGN = iψ̄γµ∂µψ +
g

2
(ψ̄ψ)2 . (277)

This model is of interest because it exhibits, albeit in a lower-dimensional,
non-gauge-theory context, some properties of quantum chromodynamics (QCD),
namely asymptotic freedom, dynamical symmetry breaking of a certain chi-
ral symmetry, and the formation of a massive bound state of fermions. These
properties were shown by an exact solution of the model in [72] in an N →∞
limit that enabled Gross and Neveu to obtain nonperturbative information
about the theory. A semiclassical calculation of the bound-state spectrum of
the model was carried out in [74].

The Gross-Neveu model has also been studied at finite N , where it is
not, in general, exactly solvable. In these studies, one again makes use of
a property that the model shares with QCD, namely asymptotic freedom,
which allows one to carry out reliable perturbative calculations at high Eu-
clidean energy/momentum scales µ in the deep ultraviolet (UV), where the
running four-fermion coupling, g(µ), approaches zero. In this context, there
is an interesting and fundamental question: how does this running coupling
g(µ) change as the scale µ decreases from the deep UV to the infrared (IR)
limit at µ = 0? This change of g(µ) as a function of µ is described by the
renormalization group (RG) [5] and the associated beta function, β = dg/dt,
where dt = d lnµ. The asymptotic freedom property is equivalent to the fact
that β is negative in the vicinity of the origin, g = 0, so that this point is a
UV fixed point (UVFP) of the renormalization group. As µ decreases from
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the UV toward the IR, several different types of behavior of a theory are,
a priori, possible. One is that the (perturbatively calculated) beta function
has no IR zero, so that as µ decreases, g(µ) eventually increases beyond the
range where perturbative methods can be used to study its RG evolution. An
alternative possibility is that β has an IR zero at sufficiently small coupling
so that it can be studied using perturbative methods. An exact IR zero of
β would be an IR fixed point (IRFP) of the renormalization group. In the
N → ∞ limit used in [72] to solve the model, the resultant beta function
(given below in Eq. (286)) does not exhibit any IR zero. Ref. [75] calculated
1/N corrections to the N →∞ limit in the Gross-Neveu model and excluded
the presence of an IR zero to this order. However, to our knowledge, there
has not been an analysis of the beta function of the GN model for finite N
to higher-loop order to address the question of whether it exhibits evidence
for an infrared fixed point.

In this section, we shall carry out this analysis of the beta function of
the finite-N Gross-Neveu to address and answer the question of whether
this function exhibits an IR zero in its beta function. We shall investigate
the beta function to the highest loop order to which it has been calculated,
namely four loops, making use of a recent computation of the four-loop term
in Ref. [76].

Our discussion on this work is organized as follows. In Section 4.1 we re-
view some background information about the Gross-Neveu model. In Section
4.2 we carry out our analysis of the beta function of the finite-N Gross-Neveu
model up to the four-loop level. In Section 4.3 we extend this analysis using
Padé approximants. Section 4.4 contains an analysis of the effect of scheme
transformations on the beta function. In Section 4.5 we comment further on
the large-N limit.

4.1 Some Relevant Background on the Gross-Neveu
Model

Here we briefly review some relevant background concerning the Gross-Neveu
model. We first comment on some notation. In Ref. [72], the coefficient in
front of the (ψ̄ψ)2 operator was written as a squared coupling, which we
denote as (g2GN/2), while many subsequent works have written it as g/2, so
one has

g ≡ g2GN . (278)
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The analysis of the model in [72] made use of a functional integral identity to
express the path integral as the m → ∞ limit of a path integral containing
an auxiliary real scalar field φ with a mass m and a Yukawa interaction

LY = gGNm[ψ̄ψ]φ . (279)

Since φ is a real field, the hermiticity of LY implies that gGN must be real,
which, in conjunction with Eq. (278), implies that g must be non-negative:

g ≥ 0 . (280)

For d = 2 (as more generally, for any even spacetime dimension), one
can define a product of Dirac gamma matrices, denoted γ5, that satisfies
the anticommutation relation {γ5, γµ} = 0 for all γµ. This γ5 matrix also

satisfies γ25 = 1 and γ†5 = γ5. (An explicit representation is γ0 = σ1, γ1 = σ2,
with γ0γ1 = iγ5 = iσ3, where σj are the Pauli matrices.) One can then
define chiral projection operators PL,R = (1/2)(1 ± γ5). As usual, one then
defines left and right chiral components of the fermion field as ψL = PLψ and
ψR = PRψ.

The Gross-Neveu model is invariant under a discrete global Z2 group
generated by the identity and the chiral transformation

ψ → γ5ψ . (281)

This discrete chiral transformation (281) takes ψ̄ψ → −ψ̄ψ, and hence this
Z2 symmetry forbids (i) a mass term in the Lagrangian (277) and (ii) the
generation of a nonzero condensate 〈ψ̄ψ〉. This is true to all (finite) orders
of perturbation theory.

The Gross-Neveu model is also invariant under the continuous global (cg)
symmetry group

Gcg = U(N) (282)

defined by the transformation

ψ → Uψ , (283)

where U ∈ U(N) (so ψ̄ → ψ̄U †). In terms of the chiral components of
the fermion field, the continuous global symmetry transformation (283) is
ψL → UψL, ψR → UψR. In contrast to the discrete γ5 symmetry, the
continuous symmetry Gcg leaves the operator ψ̄ψ invariant.
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An exact solution of the theory was obtained in [72] in the limit N →∞
and gGN → 0 with the product

λ ≡ g2GNN ≡ gN (284)

a fixed and finite function of µ. We shall denote this as the LN limit (i.e.,
the large-N limit with the condition (284) imposed). In this limit, there is a
nonperturbative generation of a nonzero bilinear fermion condensate, 〈ψ̄ψ〉,
dynamically breaking the discrete Z2 chiral symmetry. In this limit, there is
also the formation of a massive bound state of fermions.

The beta function for gGN is

βGN =
dgGN
dt

, (285)

where dt = d lnµ. (The µ dependence of the coupling will often be suppressed
in the notation.) This beta function is [72, 77]

βGN = −gGNλ
2π

. (286)

The fact that this beta function is negative is an expression of the asymptotic
freedom of the theory. This beta function does not exhibit any zero away
from the origin, i.e., any infrared zero. However, since the calculation in [72]
was performed in the LN limit, this leaves open the possibility that at finite
N , there could be an IR zero in the beta function that would disappear in
the LN limit. We discuss this LN limit further in Section 4.5 below.

4.2 Beta Function for General N

Although the Gross-Neveu model is not, in general, solvable away from the
LN limit, there has also been interest over the years in analyzing it for finite
N . In terms of the coupling g, the beta function of the finite-N GN model is

β =
dg

dt
, (287)

where, as before, dt = d lnµ. For our purposes, it will be convenient to
introduce a variable a that includes the factor 1/(2π) resulting from Feynman
integrals in d = 2 dimensions, namely

a =
g

2π
=
g2GN
2π

. (288)
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The ` = 1 and ` = 2 loop terms in β are independent of the scheme used
for regularization and renormalization, while the terms at loop order ` ≥ 3
are scheme-dependent. The beta function was calculated up to two-loop level
in [78], with the results

b1 = −2(N − 1) (289)

and
b2 = 2(N − 1) . (290)

The fact that b1 in Eq. (289) is negative means that in d = 2, this theory
is asymptotically free for any finite N > 1 as well as in the N → ∞ limit
considered in [72].

The three-loop coefficient, b3, was calculated in [79, 80] in the MS scheme,
with the result

b3 =
(N − 1)(2N − 7)

2
. (291)

Recently, the four-loop coefficient, b4 has been calculated, again in the MS
scheme, to be [76]

b4 =
1

3
(N − 1)

[
− 2N2 − 19N + 24− 6(11N − 17)ζ3

]
, (292)

where ζs =
∑∞
n=1 n

−s is the Riemann zeta function.
We comment on the dependence of the beta function coefficients on N .

The property that these coefficients all contain a factor of (N − 1) is a con-
sequence of the fact that for N = 1 the GN model is equivalent to the mass-
less abelian Thirring model [81], which has an identically zero beta function
[82, 83]. Note that this statement about the beta function of the Thirring
model is scheme-independent; if a beta function vanishes in one scheme, then
it vanishes in all other schemes reached by acceptable (nonsingular) scheme
transformations [37]. It follows that all of the coefficients b` contain a factor
of (N − 1). Therefore, it is only necessary to analyze the beta function of
the Gross-Neveu model for N > 1, where it is nonvanishing, and we will thus
restrict to the physical integral values N ≥ 2 henceforth. We next discuss
how the b` depend on N in the relevant range N > 1. For this discussion,
we consider N to be extended from the positive integers to the real numbers.
The three-loop coefficient b3 is a monotonically increasing function of N that
is negative for N < 7/2, vanishes for N = 7/2, and is positive for N > 7/2.
Thus, for physical, integral values, b3 < 0 if N = 2 or N = 3 and b3 > 0 if
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N ≥ 4. The coefficient b4 is negative for large N and is positive for N in the
interval

Nb4z,m < N < Nb4z,p , (293)

where the subscript b4z stands for “b4 zero” and

Nb4z,(p,m) =
−19− 66ζ3 ±

√
553 + 3324ζ3 + 4356ζ23

4
(294)

with (p,m) corresponding to the ± sign. These have the values Nb4z,m =
−50.616 and Nb4z,p = 1.448 to the given floating-point accuracy. Thus, in
the relevant range N > 1 under consideration here, b4 is negative.

We proceed to investigate the question of whether the beta function for
the Gross-Neveu model at finite N exhibits evidence for an infrared zero.
We denote an IR zero of the n-loop beta function βn` as aIR,n`, and the
corresponding value of g as gIR,n` = 2πaIR,n`. This IR zero of beta is a zero
for positive a closest to the origin (if there is such a zero), which one would
thus reach as µ decreases from the deep UV at large µ to the IR at small µ
and a increases from 0. At the two-loop level, β2` has an IR zero at

aIR,2` = −b1
b2

= 1 , (295)

i.e., gIR,2` = 2π. Note that this value is independent of N . To judge whether
this constitutes convincing evidence of an IR zero in the beta function, it is
necessary to determine if higher-loop calculations confirm it. We next carry
out this task.

At the three-loop level, the condition that β3` = 0 away from the origin
is the quadratic equation b1 + b2a+ b3a

2 = 0. This has two solutions,

a =
2[−1±

√
2(N − 3) ]

2N − 7
. (296)

If N < 3, then these solutions are complex and hence unphysical. If N = 3,
these roots coincide, so that aIR,3` = 2, i.e., gIR,3` = 4π. For N ≥ 3, there is
only one physical root, namely

aIR,3` =
2[−1 +

√
2(N − 3) ]

2N − 7
. (297)
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However, this is not, in general, close to the two-loop zero of the beta function
at aIR,2` = 1. Furthermore, while aIR,2` = 1 is independent of N , aIR,3` has a
completely different behavior as a function of N ; it decreases monotonically
with N in the interval N ≥ 3 over which it is physical and approaches zero
asymptotically like

aIR,3` ∼
√

2

N
− 1

N
+O

( 1

N3/2

)
as N →∞ . (298)

At the four-loop level, the condition that β4` = 0 away from the origin is
the cubic equation

b1 + b2a+ b3a
2 + b4a

3 = 0 . (299)

The nature of the roots of this equation is determined by the discriminant,

∆3 = b22b
2
3 − 27b21b

2
4 − 4(b1b

3
3 + b4b

3
2) + 18b1b2b3b4 . (300)

This discriminant is negative for the relevant range N ≥ 2 (indeed, it is
negative for all real N). This implies that Eq. (299) has one real root
and a pair of complex-conjugate roots. The real root is negative and hence
is unphysical, since it violates the positivity requirement (280). Moreover,
since it is negative, it is clearly incompatible with the values of aIR,2` and
aIR,3`, which are positive (discarding the unphysical complex value of aIR,3`
at N = 2). We therefore do not label this root as aIR,4`, but instead as
art,4`, where rt stands simply for the real root of Eq. (299). We find that
the magnitude of art,4` decreases toward zero monotonically as N increases
in the relevant interval N ≥ 2, with the asymptotic behavior

art,4` ∼ −
31/3

N2/3
+

1

2N
+O

( 1

N4/3

)
as N →∞ . (301)

We list the values of aIR,2`, aIR,3`, and art,4` in Table 10 for N from 2 to 10
and for three representative larger values, N = 100, 300, and 103.

In our discussion above, we had stated that in order to judge whether
the result for aIR,2` constitutes convincing evidence of an IR zero in the
beta function, it is necessary to determine if higher-loop calculations confirm
it. A necessary condition for the reliability of a perturbative calculation is
that if one calculates some quantity to a given loop order, then there should
not be a large fractional change in this quantity if one computes it to one
higher order in the loop expansion. This condition applies, in particular, to
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Table 10: Values of aIR,2`, aIR,3`, and art,4` for the beta function of the Gross-Neveu
model, as a function of N . Here, the three-loop and four-loop coefficients b3 and b4 are
calculated in the MS scheme. If N = 2, then the zeros of β3` at nonzero a form an
unphysical complex (cmplx) pair. As indicated, all of the values of art,4` are negative and
hence unphysical. See text for further details.

N aIR,2` aIR,3` art,4`
2 1 cmplx −0.573
3 1 2.000 −0.370
4 1 0.828 −0.302
5 1 0.667 −0.264
6 1 0.580 −0.239
7 1 0.522 −0.220
8 1 0.481 −0.205
9 1 0.448 −0.194
10 1 0.422 −0.184
100 1 0.134 −0.0567
300 1 0.0788 −0.0295
103 1 0.0438 −0.0138

86



the calculation of a putative zero of the beta function. Quantitatively, in
order for the perturbative calculation of the IR zero of a beta function to be
reliable, it is necessary that the fractional difference

|aIR,(n−1)` − aIR,n`|
1
2
[aIR,(n−1)` + aIR,n`]

(302)

should be reasonably small and should tend to decrease with increasing loop
order, n. As is evident both from our analytic formulas and from the numer-
ical results listed in Table 10, this necessary condition is not satisfied in the
present case.

The reason for this is clear from a plot of the beta functions βn` at loop
orders n = 2, n = 3, and n = 4. This shows that the IR zero in the two-loop
beta function occurs at a value of a that is too large for the perturbative
calculation to be reliable. In Fig.5 and 6 we plot the two-loop, three-loop,
and four-loop beta functions for the Gross-Neveu model as functions of a for
two illustrative values of N , namely N = 3 and N = 10. As is evident from
these plots, the beta function does not satisfy the necessary criterion for the
reliability of a calculation of an IR zero. For the IR zero of the two-loop
beta function at aIR,2` = 1 to be reliable, one requires that the curves for the
three-loop and four-loop beta functions should agree approximately with the
curve for the two-loop beta function for a ' 1, and that these higher-loop
beta functions should thus have respective IR zeros that are close to the two-
loop zero at aIR,2` = 1. But this is not the case; for N = 3, β3` has a double
zero at the larger value, aIR,3` = 2 and then goes negative again, while β4`
has no IR zero in the physical region, a > 0. For N = 10 the three-loop beta
function β3` vanishes at a smaller value of a than a = 1 (and this value, aIR,3`
decreases as N increases), while the four-loop beta function β4` again has no
IR zero in the physical region, a > 0. The behavior illustrated for N = 10 is
generic for other values of N ≥ 4. Indeed, the curves for these beta functions
at loop order n = 2, 3, 4 only agree with each other close to the origin, and
deviate strongly from each other before one gets to values of a where a zero
occurs. Specifically, for N = 3, β2` and β3` only agree with each other for a
up to about 0.5, while β4` deviates from these lower-loop beta functions as a
increases beyond approximately 0.2. As N increases, these deviations occur
for smaller a. Thus, for N = 10, β2` and β3` only agree with each other for a
up to roughly 0.15, while β4` deviates from these lower-loop beta functions
as a increases beyond about 0.08.
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Figure 5: Plot of the n-loop β function βa,n` of the Gross-Neveu model as a function of
a for N = 3 and (i) n = 2 (red), (ii) n = 3 (green), and (iii) n = 4 (blue) (colors in online
version). At a = 0.16, going from bottom to top, the curves are β4`, β2`, and β3`.

4.3 Analysis with Padé Approximants

In this section we carry out a further investigation of a possible IR fixed point
in the renormalization-group flow for the Gross-Neveu model by calculating
and analyzing Padé approximants (PAs) to the beta function at three-loop
and four-loop level. Since we are interested in a possible zero of the beta
function away from the origin, it will be convenient to deal with a reduced
(rd) beta function,

βrd ≡
β

2πb1a2
= 1 +

1

b1

∞∑
`=2

b`a
`−1 . (303)

The n-loop reduced beta function with n ≥ 2, denoted βrd,n`, is obtained
from Eq. (303) by replacing ` = ∞ by ` = n as the upper limit in the
summand. This n-loop reduced beta function is thus a polynomial of degree
n − 1 in a. The [p, q] Padé approximant to this polynomial is the rational
function

[p, q]βrd,n`
=

1 +
∑p
j=1 njx

j

1 +
∑q
k=1 dk x

k
(304)
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Figure 6: Plot of the n-loop β function βa,n` of the Gross-Neveu model as a function of
a for N = 10 and (i) n = 2 (red), (ii) n = 3 (green), and (iii) n = 4 (blue) (colors in online
version). At a = 0.2, going from bottom to top, the curves are β4`, β2`, and β3`.

with
p+ q = n− 1 , (305)

where the nj and dk are a-independent coefficients of the respective polyno-
mials in the numerator and denominator of [p, q]βrd,n`

. (Our notation follows
[71].) Hence, at a given n-loop order, there are n Padé approximants that
one can calculate, namely

{ [n− k, k − 1]βrd,n`
} with 1 ≤ k ≤ n . (306)

These provide rational-function approximations of the series expansion for
βrd,n` that fits this series to the loop order n. As in our earlier work, e.g.,
[14, 30, 35], these provide an alternate approach to investigating zeros of a
beta function.

We shall label one of the p zeros of a [p, q]βrd,n`
Padé approximant as

[p, q]zero and one of the q poles of this approximant as [p, q]pole; in each case,
the value of n is given by Eq. (305) as n = p+ q+ 1. At the n-loop level, the
Padé approximant [n−1, 0]βrd,n`

is equal to the reduced n-loop beta function
βrd,n` itself, which we have already analyzed in the previous section, and the
PA [0, n−1]βrd,n`

has no zeros, and hence is not useful for our study. Hence, at
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the n-loop level, we focus on the n−2 PAs [p, q]βrd,n`
with [p, q] = [n−k, k−1]

having 2 ≤ k ≤ n− 1.
At the n = 3 loop level, we thus consider the [1, 1]βrd,3` Padé approximant.

This is

[1, 1]βrd,3` =
1 +

(
b2
b1
− b3

b2

)
a

1−
(
b3
b2

)
a

=
1−

(
2N−3

4

)
a

1−
(
2N−7

4

)
a
. (307)

where the coefficients b1, b2, and b3 were given in Eqs. (289)-(291) above.
This [1,1] PA has a zero at

[1, 1]zero =
4

2N − 3
(308)

and a pole at

[1, 1]pole =
4

2N − 7
. (309)

The a = [1, 1]pole is not relevant, since if N = 2 or 3, it has the respective
negative and hence unphysical values −4/3 and −4, while for N ≥ 4, it lies
farther from the origin than the zero. This is clear from the fact that the
difference

[1, 1]pole − [1, 1]zero =
16

(2N − 3)(2N − 7)
(310)

is positive for this range N ≥ 4. Since the [1, 1]pole lies farther from the origin
than [1, 1]zero, the coupling a = a(µ) never reaches the pole as µ decreases
from large values in the UV to µ = 0 and thus a(µ) increases from 0 to
[1, 1]zero. We list the values of the zero of the [1, 1]βrd,3` Padé approximant
in Table 11. For N ≥ 3, the value of a = [1, 1]zero is smaller than aIR,3`
and decreases more rapidly to zero as N → ∞ than aIR,3`. If N = 3, the
comparison cannot be made, since aIR,3` is complex. Thus, this analysis of
the [1,1] Padé approximant to the reduced three-loop beta function, βrd,3`
yields further evidence against a (reliably calculable) IR zero in the beta
function up to the three-loop level.

At the n = 4 loop level, there are two Padé approximants to analyze,
namely [2, 1]βrd,4` and [1, 2]βrd,4` . We calculate

[2, 1]βrd,4` =
1 +

(
b2
b1
− b4

b3

)
a+

(
b3
b1
− b2b4

b1b3

)
a2

1− b4
b3
a

, (311)
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where the coefficients bn were given in Eqs. (289)-(292). The zeros of the
numerator occur at a = [2, 1]zero,(i,ii), where

[2, 1]zero,(i,ii) =

b2b3 − b1b4 ±
[
b21b

2
4 + b22b

2
3 − 4b1b

3
3 + 2b1b2b3b4

]1/2
2(b2b4 − b23)

. (312)

and the subscripts i and ii correspond to the± sign in front of the square root.
It is straightforward to substitute the explicit expressions for the coefficients
b2, b3, and b4 in Eq. (312), but the resultant expressions for these quadratic
roots in terms of the explicit coefficients bn, 1 ≤ n ≤ 4 are somewhat lengthy,
so we do not display them. The pole of the [2, 1]βrd,4` PA occurs at a =
[2, 1]pole, where

[2, 1]pole =
b3
b4

= − 3(2N − 7)

2[2N2 + 19N − 24 + 6(11N − 17)ζ3]
. (313)

If one has a series expansion of a function that contains nzero zeros and
npole poles, and one calculates [r, s] Padé approximants to this series with
r > nzeros and s > npoles, the approximants typically exhibit sets of nearly
coincident zero-pole pairs in addition to fitting the actual zeros and poles of
the function (e.g., see [71, 35]). These nearly coincident zero-pole pairs may
thus be ignored. This happens in the present case. For example, for N = 3,
the [2, 1]βrd,4` PA has a zero at a = 0.99773, a zero at a = 0.009015 and a
pole at a = 0.009015, and similarly for other values of N . In Table 11 we list
the first zero, denoted [2, 1]zero,i, as a function of N .

We calculate the [1, 2]βrd,4` Padé approximant to be

[1, 2]βrd,4` =
1 +

[
b21b4+b

3
2−2b1b2b3

b1(b22−b1b3)

]
a

1 +
(
b1b4−b2b3
b22−b1b3

)
a+

(
b23−b2b4
b22−b1b3

)
a2

. (314)

The two poles of the [1, 2]βrd,4` approximant occur at a = [1, 2]pole,(i,ii), where

[1, 2]pole,(i,ii) =
b1b4 − b2b3 ±

[
b21b

2
4 − 3b22b

2
3 + 4b1b

3
3 + 4b32b4 − 6b1b2b3b4

]1/2
2(b2b4 − b23)

.

(315)
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Table 11: Values of [1, 1]zero from [1,1] Padé approximant to the reduced three-loop
beta function, βrd,3`, and [2, 1]zero,i from the [2,1] Padé approximant to the four-loop beta
function, βrd,4`. See text for further details.

N [1, 1]zero [2, 1]zero,i
2 4.000 0.940
3 1.333 0.998
4 0.800 0.999
5 0.571 0.992
6 0.444 0.982
7 0.364 0.9725
8 0.308 0.963
9 0.267 0.953
10 0.235 0.943
100 0.0203 0.683
300 0.00670 0.615
103 0.00200 0.585

The zero of this approximant occurs at a = [1, 2]zero, where

[1, 2]zero =
b1(b1b3 − b22)

b21b4 + b32 − 2b1b2b3

= − 3(2N − 3)

2[2N2 + 13N − 9 + 6(11N − 17)ζ3]
. (316)

Both of the poles [1, 2]pole,i and [1, 2]pole,ii are negative. Furthermore,
we find that this approximant has nearly coincident zero-pole pairs, which
thus can both be ignored. For example, for N = 3, the zero occurs at
a = −0.027540 while one of the poles occurs at the nearly equal value,
a = −0.027556, and the other pole is at a = −0.97919. Similar results hold
for other values of N , i.e., the [1, 2]βrd,4` PA has a nearly coincident zero-pole
pair (at negative a) together with a second unphysical pole at negative a.

As we have discussed, the four-loop beta function yields a negative real
root, in strong disagreement with the two-loop and three-loop beta functions.
At this four-loop level, the [1,2] PA does not exhibit any true zero, but only
a zero that is nearly coincident with a pole and hence can be identified as an
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artifact. The [2,1] PA yields a zero, but it is at a completely different value
than the only real root of the actual four-loop beta function, art,4`. Thus, our
analysis of the [2,1] and [1,2] Padé approximants to the four-loop (reduced)
beta function yield further evidence against a robust IR zero in this four-loop
beta function.

4.4 Analysis Using Scheme Transformations

Since the coefficients b` with ` ≥ 3 in the beta function are scheme-dependent,
it is necessary to check that the conclusions from our analysis of the beta
function with b3 and b4 calculated in the MS scheme are robust with re-
spect to scheme transformations. The contents and notations for scheme
transformation formalism follow Sec.1.4. To begin with, we study scheme
transformations that are designed to remove higher-loop terms in the beta
function.

Ref. [37] gave the first explicit scheme transformation to set b′` = 0
for ` ≥ 3, at least in the local vicinity of the origin, but it also showed
that this does not, in general, work to remove these higher-loop terms at
a point located away from the origin, i.e., an IR zero in an asymptotically
free theory or a UV zero in an IR-free theory. The reason is that, as shown
in [37, 38, 39], if one attempts to apply such a scheme transformation to
remove these higher-loop terms at a point away from the origin, then the
transformation violates one or more of the conditions C1-C4 for acceptability.
As in [38, 39], we denote the scheme transformation presented in [37] (with
smax = m) that removes the coefficients in the beta function up to loop order
` = m+ 1, at least near the origin, as SR,m.

We proceed with our analysis with the SR,m scheme transformation. The
SR,2 transformation has [37]

k2 =
b3
b1

(317)

and the SR,3 transformation has this k2 and

k3 =
b4
2b1

. (318)

We begin by determining whether the scheme transformation SR,2 can be
applied in the relevant region of a where we need to apply it to set b′3 = 0
and thus remove the three-loop term in the beta function. Since the (scheme-
independent) two-loop value is aIR,2` = a′IR,2` = 1, the relevant region is in
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the neighborhood of a = 1. This SR,2 transformation is defined by Eq. (22)
with smax = 2 and k2 given by Eq. (317). If the application of this SR,2
transformation in the vicinity of a = were possible, then it would follow from
Eq. (32) that b′4 = b4. For SR,2, Eq. (20) is

SR,2 =⇒ a = a′[1 + k2(a
′)2] = a′

[
1 +

b3
b1

(a′)2
]
. (319)

Solving Eq. (319) for a′, we obtain three roots, and we require that at
least one of these should be a physical (real, positive) value for a in the
relevant range of values comparable to aIR,2` = 1. We find that this necessary
condition, C1, is not satisfied. Instead, two of the solutions of Eq. (319) for
a′ form a complex-conjugate pair, while the third is negative. For example,
for a = aIR,2` = 1 and N = 4, the three solutions for a′ are 1.191 ± 0.509i
and −2.383, while for N = 10, the three solutions for a′ are 0.4125± 0.450i
and −0.825. The Jacobian also exhibits pathological behavior; J is given by

SR,2 =⇒ J = 1 + 3k2(a
′)2 = 1 +

3b3
b1

(a′)2

= 1− 3(2N − 7)

4
(a′)2 . (320)

For aIR,2` = a′IR,2` = 1, J = (25 − 6N)/4, which decreases through zero as
N (continued to the real numbers) increases through the value N = 25/6,
violating condition C3. It is therefore not possible to use this scheme trans-
formation to remove the three-loop term in the beta function in the region of
a where we are trying to do this, namely the neighborhood of the (scheme-
independent) value a = aIR,2` = 1.

We can also investigate whether the scheme transformation SR,3 is phys-
ically acceptable to be applied in the relevant range of values of a, namely
a = aIR,2` = 1. This transformation is defined by Eq. (22) with smax = 3
and k2 and k3 given by Eqs. (317) and (318):

SR,3 =⇒ a = a′[1 + k2(a
′)2 + k3(a

′)3]

= a′
[
1 +

b3
b1

(a′)2 +
b4
2b1

(a′)3
]
. (321)

The Jacobian for this transformation is

SR,3 =⇒ J = 1 + 3k2(a
′)2 + 4k3(a

′)3

= 1 +
3b3
b1

(a′)2 +
2b4
b1

(a′)3 . (322)
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With this SR,3 scheme transformation we find that for the relevant range of
a ' 1, J can deviate excessively far from unity, violating condition C1. For
example, for a = 1 and N = 10, we find that J = 339.8, much larger than
unity.

One can also apply the various scheme transformations that we have de-
vised in [1, 2, 14, 30, 36, 37, 38, 39, 40, 41, 35] to the beta function calculated
in the MS scheme and compare the resulting value(s) of the zero(s) of the
beta function with the value(s) obtained at the three-loop and four-loop level
in the MS scheme. Our general analyses in [1, 2] (see also [53]) have shown
that, for moderate values of the parameters determining these scheme trans-
formations, the resultant values of the zero(s) are similar to those obtained
in the original MS scheme. In particular, the negative, unphysical value of
art,4` will still be present in the transformed scheme.

Summarizing this section, we have shown that our conclusion, that the
beta function of the finite-N Gross-Neveu model, calculated up to four-loop
order, does not exhibit an IR zero, is robust with respect to scheme trans-
formations.

4.5 Comparison with Results in the LN Limit and Be-
havior for d > 2

In this section we discuss how the conventional perturbative beta function re-
duces in the LN limit, and we also comment on some properties of the theory
for spacetime dimension d > 2. From Eq. (284), the quantity that remains
finite and nonzero in the LN limit is λ = gN , and hence the corresponding
beta function that is finite in this limit is

βλ =
dλ

dt
= lim

LN
N
dg

dt
= lim

LN
Nβ . (323)

With the limit N → ∞ having been taken, βλ has the series expansion, for
d ≥ 2, with εd = d− 2,

βλ = λ
[
εd +

∞∑
`=1

b̂`ξ
`
]
, (324)

where

ξ = lim
LN

Na =
λ

2π
(325)
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and

b̂` = lim
LN

b`
N `

. (326)

Here we have used the fact that b`a
` = b̂`ξ

`. We find

b̂1 = −2 (327)

and
b̂` = 0 for ` ≥ 2 . (328)

The latter result follows from the fact that the structure of the bubble graphs
in the calculation of b` in, e.g., the MS scheme, means that, for ` ≥ 2, b` is
a polynomial in N of degree ` − 1. Although the b` with ` ≥ 3 are scheme-
dependent, this property is maintained by scheme transformations that are
finite in the LN limit [37]. Hence, for ` ≥ 2, limLN b`/N

` = 0, which is
the result given in Eq. (328). Similarly, although b̂` with ` ≥ 3 are, in
general, scheme-dependent, if they are zero in one scheme, such as the MS
scheme, then they are also zero in any other scheme reached by a scheme
transformation function that is finite in the LN limit [37]. It follows that in
the LN limit, with d = 2 + ε ≥ 2,

βλ = λ[ε− 2ξ] = λ
[
ε− λ

π

]
. (329)

Hence,

d = 2 =⇒ βλ = −λ
2

π
, (330)

with only the UV zero in this beta function at λ = 0, and no IR zero. We can
relate this to the beta function that was calculated in [72] in the LN limit.
From Eqs. (278) and (287), we have

β =
dg

dt
= 2gGN

dgGN
dt

= 2gGNβGN . (331)

Explicitly, in the LN limit, from Eqs. (330) and (278),

βλ = −λ
2

π
= − lim

LN

g4GNN
2

π
. (332)

Combining Eqs. (323), (331), and (332) yields βGN = −g3GNN/(2π) =
−gGNλ/(2π), in agreement with Eq. (286) above, or equivalently, Eq. (3.7)
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in Ref. [72]. This agreement was guaranteed, since the LN limit is a special
limit of the result for finite N . Accordingly, our finding that there is no
robust evidence for an IR zero in the finite-N beta function of the (d = 2)
Gross-Neveu model is, a fortiori, in agreement with the fact that in the LN
limit, the beta function βλ in Eq. (330) (equivalently, βGN in Eq. (286)
above), does not exhibit an IR zero.
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5 Conclusions

In this dissertation we studied transformations of schemes used for regu-
larization and renormalization in quantum field theories, performed explicit
construction of several scheme transformations and applied these to study
renormalization group evolution of some asymptotically free quantum field
theories. This research was done in collaboration with Prof. R. Shrock, and
the results were published in the four papers [1]-[4], the last of which also
involved Prof. T. Ryttov as a coauthor. In Sec.1 we reviewed some basic
background for this research.

In Sec.2, corresponding to the two papers [1, 2], we constructed and
studied several scheme transformations. As was discussed in Refs. [36]-[39],
scheme transformations that are acceptable in the vicinity of zero coupling
may not be acceptable for the study of zeros of the beta function at nonzero
coupling (but still in the perturbative regime), in particular, at an infrared
fixed point in an asymptotically free gauge theory. Motivated by this, we
made progress in constructing new scheme transformations which can map
coupling spaces of different renormalization schemes for the regime away
from zero and still preserve perturbativity and unitarity. Applying those to
an infrared zero αIR,zero of the beta function of SU(Nc) gauge theory with
Nf massless fermion flavors in a representation of G, we could quantify the
degree of scheme dependence of αIR,zero calculated to a given loop order and
show reduction of scheme dependence of αIR,zero resulting from higher-loop
corrections [1, 2].

In Sec.3, corresponding to the paper Ref. [3], we studied the renormalization-
group evolution of an N = 1 supersymmetric gauge theory with a non-
Abelian gauge group G = SU(Nc) and Nf massless chiral and anti chiral
superfields in representations R and R̄ of G by examining the beta function
βNSV Z calculated by Novikov, Shifman, Vainshtein, and Zakharov (NSVZ).
This beta function has the form of a rational function of the coupling α and
thus exhibits not only an infrared zero at α = αIR,zero in the non-Abelian
Coulomb phase, but also a pole. To study the scheme dependence in a finite-
loop calculation of the beta function for this theory, we compare properties of
the NSVZ beta function with those of the beta function calculated to finite-
loop order in a different scheme, namely the DR scheme. We calculate Padé
approximants to the beta functions for these theories in the DR scheme up to
four-loop order for the gluonic theory and up to three-loop order for the the-
ories with matter superfields and compare results for IR zeros and poles with
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results from the NSVZ beta function. Our calculations provide new insights,
for these theories, of how well finite-order perturbative results calculated in
one scheme reproduce properties of a known beta function calculated in a
different scheme.

In Sec.4, corresponding to the paper [4], we discussed an investigation of
the (two-dimensional) finite-N Gross-Neveu model. This model has a four-
fermion interaction involving an N -component fermion and is asymptotically
free, i.e., has a UV zero of the beta function at zero four-fermion coupling.
The model was exactly solved in the limit N →∞ by Gross and Neveu [72].
In this limit, it did not exhibit an infrared fixed point of the renormalization
group, but this left open the question of whether the beta function of the
finite-N model might have an IR zero and associated IR fixed point. For our
study, we calculate and analyze Padé approximants to the beta function and
evaluate effects of scheme dependence. From our study, we find that in the
range of coupling where the perturbative calculation of the four-loop beta
function is reliable, it does not exhibit robust evidence for an infrared zero.
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