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Abstract of the Dissertation

Infrared dynamics of non-Abelian gauge theories out of equilibrium

by

Mark Mace

Doctor of Philosophy

in

Physics

Stony Brook University

2018

The initial moments after an ultrarelativistic nuclear collision present a unique opportu-
nity to study the many-body dynamics of Quantum Chromodynamics (QCD) out of equi-
librium. This system is highly occupied with gluons up to an emergent semi-hard scale, Qs,
the saturation momentum. Because the coupling at early times is weak, systematic studies
are possible using an effective theory of QCD, the Color Glass Condensate effective field
theory (CGC EFT). In this dissertation, we use the CGC EFT to probe novel features of
the infrared regime of far-from-equilibrium QCD systems.

The prospect of detecting the Chiral Magnetic Effect (CME) in ultrarelativistic heavy-ion
collisions has generated great interest in real-time topological transitions, called sphaleron
transitions, in QCD. Here chiral charge, anomalously produced by sphaleron transitions,
generates an electric current when in the presence of the strong, but short-lived magnetic
field created by the passing heavy-ions. This current can imprint itself on the detected
hadrons: the search for this signal is a major focus of current and planned heavy-ion collision
experiments at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Lab and
the Large Hadron Collider (LHC) at CERN. Using first-principles-based real-time classical-
statistical lattice gauge theory simulations, we demonstrate for the first time that sphaleron
transitions occur in QCD out of equilibrium. By determining the time evolution of the
characteristic scales in the system, we show that the rate of sphaleron transitions is controlled
by the infrared screening scale. We then conclude that the rate of sphaleron transitions at
early times is favorable for the generation of the CME. With the novel addition of chiral
lattice fermions and a magnetic field, we investigate the real-time dynamics of anomalous
transport phenomena, like the CME and the gapless excitation known as the Chiral Magnetic
Wave (CMW), microscopically. Insights necessary for model building and phenomenology
related to the search for the CME and the CMW are then discussed.

Long-range-in-rapidity correlations probe the early-time dynamics after the collision due
to causality. In small systems, where final state effects are likely small, the study of such
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correlations potentially offers a unique opportunity to directly access the early-time infrared
dynamics of the system. First, we present a proof-of-principle parton model for proton–
heavy-ion collisions. With this simple model, we qualitatively reproduce many of the multi-
particle correlations observed experimentally, which are often ascribed to final state collective
flow. This serves as a clear demonstration that such correlations can be generated without a
final state hydrodynamic medium. Next, we develop an event-by-event framework to study
initial correlations of gluons in light–heavy-ion collisions. We show that key systematics in
the observed two-particle correlations at RHIC and the LHC can be quantitatively repro-
duced with this framework. This suggests that the observed correlations may arise, at least
in part, from the earliest times after the collision. If this bears out, it would imply that
the long-range-in-rapidity correlations measured in small systems are a direct result of the
infrared dynamics of far-from-equilibrium QCD.
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Frontispiece

“So we beat on, boats against the current, borne back ceaselessly into the past.”
— F. Scott Fitzgerald, The Great Gatsby
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Chapter 1

Introduction

Moments after the Big Bang, the universe was extremely hot, dense, and rapidly expanding.
While impossible to recreate the exact conditions of the Big Bang in a laboratory, high energy
heavy-ion collision experiments, currently conducted at the Relativistic Heavy-Ion Collider
(RHIC) at Brookhaven National Lab (BNL) in the USA and the Large Hadron Collider
(LHC) at CERN in Switzerland and France, allow for the study of a strongly correlated
system of deconfined quarks and gluons, similar to the initial matter produced by the Big
Bang. The matter created in these collisions is described by Quantum Chromodynamics
(QCD), the fundamental theory of quarks and gluons interacting via the strong nuclear force.
As the energy of a nuclei increases, the density of gluons in the nuclei grows dramatically.
When two high energy nuclei collide, they form a far-from-equilibrium system highly occupied
with gluons. This extreme gluon density gives rise to an emergent semi-hard scale, Qs, the
saturation momentum. This scale becomes the dominant scale of the problem, which allows
for a weak coupling description of the system. An effective field theory of QCD, known
as the Color Glass Condensate effective field theory (CGC EFT), has been developed to
describe the dynamics of this exotic state of matter [9]. Thus, in order to understand the
early-time dynamics, it is necessary to understand the properties of the infrared regime of
out of equilibrium QCD – this is the primary focus of this dissertation. In particular, we will
study real-time topological transitions, as well as long-range-in-rapidity correlations, both
of which can be generated during these earliest times. As we will discuss, in larger systems,
these topological transitions, which are controlled by infrared excitations, may give rise to
observable anomalous transport phenomena. In smaller systems, the long-range-in-rapidity
correlations detected at RHIC and the LHC may be a direct probe of the infrared dynamics
of the initial state.

1.1 Overview

Ultrarelativistic heavy-ion collision experiments began as a means to study the high energy-
density limit of nuclear matter, whereby the building blocks of the nuclei would reveal
themselves [10, 11, 12, 13, 14]. At the time of the first relativistic heavy-ion collisions [15], the
fundamental theory of the strong interaction, Quantum Chromodynamics (QCD), was still
emerging. A large number of hadrons had been detected in collider experiments. To explain
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their different properties, it was postulated that hadrons were composite objects, made up of
so-called ‘quarks’ [16, 17]. This speculation was confirmed by deep inelastic electron-proton
scattering experiments [18, 19], where it was determined that the proton is not point-like, but
has point-like constituents. These constituents were originally termed ‘partons’ [20, 21]a,
and later identified as the previously conjectured quarks. While these initial quark/parton
models were able to describe many of the observed hadrons, an additional quantum number
was needed to maintain the correct quantum statistics of the wavefunction under the Pauli
Exclusion Principle: this is the color of the strong interaction. The quark model was then
reformulated as a non-Abelian gauge theory of the group SU(Nc = 3), with a gauge boson,
the gluon. Thus QCD, the theory of quarks and gluons interacting via the strong force, was
born.

However, two emergent features of QCD were needed for consistency with what was
observed in experiment. The first is asymptotic freedom [22, 23]. This is the property that
the coupling of QCD becomes asymptotically weak at either high energies or short distances,
while the coupling becomes strong at low energies or long distances. The discovery of this
property justified the use of perturbative methods for high energy/short distance physics.
Perturbative QCD (pQCD) has been tremendously successful (c.f. Chapter 9 of [24] for a
review and comparison of pQCD theory calculations to recent LHC measurements). The
second feature is confinement. This is the statement that at low energies/long distances (set
by the scale of QCD, ΛQCD ≈ 200 MeV [24]), free quarks and gluons cannot exist. Instead,
the strong coupling of QCD dictates that they must be in bound states of two valence
quarks (mesons) or three valence quarks (baryons) (states of four or five valence quarks are
also postulated, the latter of which has been detected at the LHC [25]). When the coupling
becomes strong, perturbative approaches break down.

The transition from a state of confined to asymptotically free quarks and gluons is what
underlies the entire field of ultrarelativistic heavy-ion collisions. First principles lattice QCD
simulations have confirmed this transition. At zero and low baryon densities, a cross-over
phase transition has been observed [26, 27]. At larger baryon densities, it is believed that
QCD undergoes a first-order phase transition which culminates at a critical point [28]. A
conjectured phase diagram of QCD matter is shown in Fig. 1.1. With the current and planned
low and medium energy heavy-ion collision experiments at RHIC, the Facility for Antiproton
and Ion Research (FAIR) at GSI in Germany, and the Nuclotron-based Ion Collider fAcility
(NICA) at the Joint Institute for Nuclear Research in Dubna, Russia, it may be possible to
experimentally map the entire phase diagram.

With high enough temperatures, it was long speculated that a new state of matter,
the Quark Gluon Plasma (QGP), would form in the deconfined region of the phase dia-
gram [10, 11, 12, 13, 14]. This new phase of matter, consisting of deconfined, but strongly
interacting quarks and gluons, was first discovered with ultrarelativistic heavy-ion collisions
at RHIC [29], and subsequently confirmed at the LHC. However, the discovery of the QGP
is only a starting point towards a complete understanding of the many-body QCD dynamics
which occur during a heavy-ion collision. A salient questions is how does the QGP form?
The picture of how this systems approaches thermal equilibrium has progressed significantly
in recent years (the modern weak-coupling perspective is briefly reviewed in Sec. 1.4.1). Nev-

aIn modern terminology, partons refer to both quark and gluons.
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Figure 1.1: The conjectured phase diagram of QCD. Figure adapted from [1].

ertheless, there is still much to learn about the properties of the matter in the pre-equilibrium
regime. In the first half of this thesis (Chapters 2 and 3), we will discuss novel real-time
topological features related to infrared excitations which occur at the earliest times after
a heavy-ion collision. These excitations may lead to observables signals at RHIC and the
LHC, and are the subject of intense current search. However, to be able to directly probe
the initial state and pre-equilibrium dynamics of the system, the QGP phase (so-called ‘final
state’) would need to be small or not happen at all. An intriguing prospect for this is with
smaller systems, like proton-lead collisions at the LHC and proton/deuteron/helium-3–gold
collisions at RHIC. In Chapters 4 and 5, we will show that the long-range-in-rapidity cor-
relations observed in these systems may offer a direct window into the initial state and the
pre-equilibrium dynamics.

1.2 Outline

In the following sections of this introductory chapter, we will first give a very brief field-
theoretical introduction to QCD. We then detail the basics of the lattice description of
QCD, which will be used throughout Chapters 2 and 3. Then we will review the state-of-
the-art in the modeling of ultrarelativistic heavy-ion collisions, including a discussion of the
CGC EFT, which underlies the majority of the physics discussed in this thesis.

In Chapter 2, we perform simulations which verify the existence of real-time topological
transitions, so-called sphaleron transitions, for the first time in an off-equilibrium QCD sys-
tem. Sphaleron transitions have garnered much recent interest due to the proposal of the
Chiral Magnetic Effect (CME) in heavy-ion collisions. A sphaleron transition will anoma-
lously produce local domains of chiral charge. When the chiral charge is in the presence of
the strong, but short-lived magnetic field created at the earliest moments after a heavy ion
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collision, the CME generates an electric field. Thus, it is crucial for sphaleron transitions to
occur during the pre-equilibrium stage of a heavy-ion collision in order for a detectable CME
signal to form. In addition to the determination of the off-equilibrium sphaleron transition
rate, properties of the dynamical scales which form in an off-equilibrium non-Abelian plasma
are studied.

In Chapter 3, we develop a first-principles-based real-time lattice field theory descrip-
tion of fermion production, including the first ever implementation of real-time chiral lattice
fermions. We first study the out-of-equilibrium production of chiral fermions resulting from
a sphaleron transition. Then, with the addition of an external magnetic field, we investigate
the real-time dynamics of the CME and related anomalous transport phenomena microscop-
ically. We discuss both the fermion mass and magnetic field dependence on the produced
currents, which may have implications for modeling and phenomenology of present and future
experiments.

In Chapter 4, we detail a proof-of-principle parton model for multiparticle correlations.
In this model of proton–heavy-ion collisions, we consider eikonal quarks scattering off a
dense nuclear target. Strikingly, we demonstrate that many of the observed multiparticle
correlations, believed to signify collectivity and hydrodynamic behavior, can be qualitatively
reproduced without any medium or final state interactions. Additionally, we use this simple
model to elucidate general features of the correlations calculated in initial state models.

In Chapter 5, we develop an event-by-event framework for calculating initial gluon cor-
relations for light-ion–heavy-ion collisions using the CGC EFT. Employing this framework,
we first show that the systematics observed for proton/deuteron/helium-3–gold collisions
at RHIC can be reproduced by initial state gluon correlations. We then demonstrate that
this framework can also describe the multiplicity dependence for proton-lead collisions at
the LHC. This establishes that correlations generated by the initial state can be significant
and in line with the experimental data, challenging the hydrodynamic paradigm for small
systems. While further study is needed to resolve this debate, if initial state correlations are
found to be dominant in these small systems, this would allow for unprecedented access to
the early-time, and thus infrared, dynamics of out-of-equilibrium QCD experimentally.

Finally, in Chapter 6, we summarize the findings in this thesis, and give an outlook to
future studies to further address the topics discussed in this thesis. A number of Appendices
then follow the main body of this dissertation.

Throughout this thesis we will always work in natural units, h̵ = c = 1, where all quantities
are given either in terms of GeV or fm (such that 1 = 0.197 GeV ⋅ fm), unless explicitly noted
otherwise. We adopt the covariant Minkowski metric tensor with mostly negative signature,
diag(gαβ) = (1,−1,−1,−1).

1.3 Basics of Quantum Chromodynamics

As previously mentioned, QCD is the fundamental theory of the strong force. It is a non-
Abelian gauge theory with the group SU(Nc = 3), however what follows will be for general
Nc; in Chapters 2 and 3 we will study SU(2)-QCD for computational simplicity. The matter
fields are composed of spin-1/2 fermions in the fundamental representation, the quarks,
which come in 6 ‘flavors’ and Nc colors. The quarks are represented by the field spinor ψi,
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where i = 1,2, ..,Nc is the fundamental color index. There are also corresponding anti-quarks,
denoted by the Hermitian conjugate, ψ†. The gauge bosons are the gluons, which are spin-1
and are in the adjoint representation. They are represented by the gauge field Aaµ, where
a = 1, ...,N2

c − 1 is the adjoint color index, and µ = 0, ...,3 is the spacetime (Lorentz) index.
The Lagrangian is given by the Yang-Mills and Dirac terms respectively,

L = −
1

4
F a
µνF

µν
a + ∑

flavorsf

ψ̄
(f)
i (i /D

ij
+m(f)δij)ψ

(f)
j , (1.1)

where repeated indices are summed over. Here

Dij
µ = ∂µδ

ij − ig(ta)ijAaµ (1.2)

is the gauge covariant derivative in the fundamental representation, where /D ≡ γαDα, where
α = 0,1,2,3 are Dirac indices, γµ are the Dirac (gamma) matrices, and ψ̄ = ψ†γ0. This gauge
covariant derivative is given in terms of the generators ta of the fundamental representation
of Lie algebra su(Nc) for the group SU(Nc). The fundamental representation generators ta

are Nc ×Nc traceless, Hermitian matrices that are normalized as tr[tatb] = δab/2. They obey
the commutation relation [ta, tb] = ifabctc, where fabc is the SU(Nc) structure function. For
SU(2), ta = σa

2 where σa are the Pauli matrices, and for SU(3), ta = λa

2 where λa are the
Gell-Mann matrices. The non-Abelian field strength tensor is given by

Fµν =
i

g
[Dµ,Dν] = ∂µAν − ∂νAµ − ig[Aµ,Aν] = F

a
µνt

a . (1.3)

It is also possible to define the gauge covariant derivative in the adjoint representation,

Dab
µ = ∂µδ

ab − ig(t̃d)abAdµ , (1.4)

where (t̃a)bc = −ifabc are the adjoint representation generators. The field strength tensor can
then alternatively be written as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gf

abcAbµA
c
ν . (1.5)

Here g is the gauge coupling of QCD; this coupling runs with the energy scale. Typically,
the coupling is given in terms of the strong coupling constant, αS = g2/4π2. As previously
mentioned, for high energies, g, and thus αS, is small, while for low energies both become
large. QCD being a gauge theory is invariant under the local gauge transformations,

ψ(x) → Ω(x)ψ(x) (1.6)

ψ̄(x) → ψ̄(x)Ω−1(x) (1.7)

Aµ(x) → Ω(x)Aµ(x)Ω
−1(x) −

i

g
[∂µΩ(x)]Ω−1(x) , (1.8)

where Ω(x) is an SU(Nc) matrix such that Ω−1 = Ω†. It is then straightforward to show that
the QCD Lagrangian, Eq. (1.1), in gauge invariant. It is possible to make a specific choice
of gauge; in many practical applications this is necessary. However, all physical quantities
must be invariant of the chosen gauge.

To solve QCD from first principles, at very high energies (and low parton densities)
perturbative methods can be employed. In the next section, we will discuss how to solve
QCD when this is not the case.
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1.3.1 Lattice QCD

In the regime where the inherently non-linear aspects of QCD become important, such as
for many-body systems or for low-energy systems, perturbation theory is not applicable. To
study this non-perturbative regime from first principles, so-called lattice formulations have
been developed [30]. Particular examples will be discussed extensively in Chapter 2 and 3;
we will only provide a basic introduction in what follows.

In these formulations, D-dimensional spacetime is discretized as a D-dimensional hyper-
cubic grid, or lattice. Consider an isotropic lattice with N lattice sites for each of the D
dimensions, with a spacing a between each site. The Lagrangian or Hamiltonian of the
continuum gauge theory is then reformulated in terms of discrete fields which depend on
discrete variables. To recovered the continuum theory, one must simultaneously take the
number of sites N to infinity and the spacing between the sites a to zero. At finite lattice
spacing and number of sites, the lattice formulation may break some of the symmetries of the
continuum theory. There is some ambiguity in how the lattice formulation is done; different
formulations may have different symmetry properties in the discretized version. Additionally,
since in the lattice formulation both position and momentum space are finite, the theory is
regulated in the IR and UV by the smallest and largest momentum scales possible, given in
terms of the inverses of the size of the lattice, L = Na, and the lattice spacing, a, respectively.

Let us now consider QCD. First, we define our spatially-isotropic 3+1D Minkowski space-
time lattice as

Λ = {n = (n0,n)∣ n0 = 0, ...,Nt − 1; n1, n2, n3 = 0,1, ...,Ns − 1} , (1.9)

where the spacing between sites is at and as for the temporal and spatial directions respective.
Starting with the QCD Lagrangian, Eq. (1.1), we will now define the our lattice field vari-
ables. The fermion fields then become ψ(n) and ¯ψ(n), where again they have Dirac, color,
and flavor indices; however for notational simplicity we will not explicitly denote these. All
contractions between indices remain unchanged in the lattice discretized formulation. Gauge
transformations of the fermion fields are analogous to the continuum, Eq. (1.8), however the
position is x→ n. Derivatives then take the form of finite difference equations, where we will
employ a central difference scheme. Thus derivatives of any spacetime-dependent function
f(x) take the form

∂µf(x)→
1

2aµ
(f(n + µ̂) − f(n − µ̂)) , (1.10)

where µ̂ denotes an increment of +1 unit on the lattice in the µ direction. In order to
preserve gauge invariance for the Dirac term on the left hand side of Eq. (1.1), we cannot
simply define the gauge fields with respect to lattice position n. Instead, we consider the
gauge link, Uµ(n), which acts as a gauge transporter between a position n and n + µ̂ of the
gauge field Aµ(n). Thus we define the gauge link as

Uµ(n) = exp(−igaµAµ(n)) (1.11)

where repeated indices here are not summed. A gauge transformation of the gauge link takes
the form

Uµ(n)→ Ω(n)Uµ(n)Ω
†(n + µ̂) . (1.12)
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Noting that U−µ(n) = U
†
µ(n − µ̂), this allows us to see that by expanding the gauge link for

small aµ,

Uµ(n) ≈ 1 − igaµAµ(n) +O(a2
µ), U−µ(n) ≈ 1 + igaµAµ(n − µ̂) +O(a2

µ) . (1.13)

The näıve Dirac term of the lattice QCD Lagrangian then takes the form

LFlat(n) = ψ̄ (
4

∑
µ=1

iγµ
Uµ(n)ψ(n + µ̂) −U−µ(n)ψ(n − µ̂)

2aµ
+mψ(n)) (1.14)

where the continuum result can be readily obtained by expanding the gauge links by Eq. (1.13)
and taking the aµ → 0 limit. However, in formulating the lattice discretized Dirac term we
have introduced spurious unphysical artifacts; these are the so-called lattice doublers. These
extra fermion modes arise from the fact that the lattice inverse Dirac operator (the quark
propagator) at finite lattice spacing has more poles than the physical fermion pole. It is
possible to introduce a term which explicitly gives these unphysical fermion modes a large
mass such that they will decouple from the physical fermion modes; this is the Wilson
term [31]. We will introduce and demonstrate how to improve upon the Wilson term in de-
tail in Sec. 3.1.1 of Chapter 3. While the Wilson term is the simplest solution to the fermion
doubler problem, the addition of this extra term at finite lattice spacing explicitly breaks
the chiral symmetry of QCD at the Lagrangian level. This symmetry will be retrieved in the
continuum limit (albeit taking the chiral-continuum limit is an exponentially hard problem
at strong coupling), however for certain problems of interest it is desirable to have chiral
symmetry at finite lattice spacing. At present the only known lattice fermion discretization
which explicitly preserves chiral symmetry is the so-called overlap formulation [32, 33]b. In
Chapter 3, we will formulate and then perform first ever studies with overlap fermions in
Minkowski spacetime. A derivation of the overlap Hamiltonian is provided in Appendix D.
We conclude by noting that a chiral, doubler-free formulation of a lattice gauge theory in even
spacetime dimensions is non-trivial, and has deep connection to differential and algebraic
topology [35, 36].

For the Yang-Mills term of the QCD Lagrangian, we must introduce the plaquette variable
for gauge links, U◻,µν(n). This plaquette variable is a product of four nearest-neighbor gauge
links which form a closed loop (in the shape of a square) starting at the position n and moving
in the +µ̂ and +ν̂ directions. By construction it is gauge invariant. More explicitly,

U◻,µν(n) = Uµ(n)Uν(n + µ̂)U−µ(n + µ̂ + ν̂)U−ν(n + ν̂)

= Uµ(n)Uν(n + µ̂)U
†
µ(n + ν̂)U

†
ν(n) . (1.15)

The Yang-Mills term then takes the form of the Wilson gauge action,

LGlat(n) = −
2

ata3
s

∑
µ<ν

Re tr [1 −U◻,µν(n)] , (1.16)

bThere are also domain wall fermions [34], where one considers a similar setup to the Wilson formulation,
but adds a fictitious fifth dimension. When the extent of this extra dimension is large, chiral symmetry
breaking is exponentially suppressed. Even with this extra dimension, the computational cost compared
to overlap is generally less. Because of this, the domain wall formulation is frequently used in Euclidean
lattice gauge theory simulations. It can also be formally shown that when the extra dimension is taken to
be infinitely large, the overlap operator is recovered.
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where the inequality in the sum is over plaquettes ensures that only a single orientation is
considered, avoiding double counting. Similar to the Dirac term, it is clear that by expanding
the Wilson gauge action in terms of gauge fields Aµ, one retrieves the continuum result in
the aµ → 0 limit. Away from this limit, corrections are of order O(a2

µ).

For a complete pedagogical introduction, as well as many practical and interesting aspects
of modern lattice field theory, see [37].

1.3.2 Semi-Classical Methods

To solve the full quantum theory, the lattice QCD path integral must be evaluated. As
previously mentioned, at present, this can only be done in Euclidean spacetime, precluding
the study of the real-time dynamics from first principles. However, in many of the situations
we will consider in this thesis, a classical or semi-classical description can be justified (this
approximation will be justified in the relevant sections where applied). It is straightforward
to then derive the classical equations of motion from the principle of stationary action,

δS[A]

δAaµ(x)
= 0 , (1.17)

where the action is defined as S = ∫ d
4xL. From this expression and Eq. (1.1), we arrive at

the classical Yang-Mills (CYM) equations,

[Dµ(x), F
µν] = Jν , (1.18)

where Jν is an matter field current (for full QCD given by Jµa = gψ̄γµtaψ) which is covariantly
conserved, as DµJµ = 0. This current vanishes identically for pure gauge theory. For the
fermion fields, the equation of motion is the Dirac equation; we will postpone any further
discussion until Chapter 3, where formulating and solving this equation non-perturbatively
is the main focus.

Focusing on the pure gauge CYM equations, we fix some of the residual gauge freedom
by taking temporal gauge, A0 = 0. This is a particularly convenient choice for the lattice, as
the temporal gauge links go to unity. The continuum equations of motion are then simply

∂tAi = Ei ,

∂tEi = −DjFji , (1.19)

where the conjugate momenta Ea
i are algebra valued fields, which we identify as the chromo-

electric field. There is an additional constraint equation, the non-Abelian version of Gauss
law DiEi = 0 (the right hand side will not be zero if we relax the pure gauge assumption).

Lattice versions of these equations of motion can be derived from the classical Yang-Mills
Hamiltonian, first derived by Kogut and Susskind [38], or the Wilson gauge action [39, 40, 41].
Using the former method, we provide the lattice equations of motion and briefly discuss how
these equations of motion are solved numerically in Chapter 2.
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1.4 Standard Model of Heavy-Ion Collisions

Ultrarelativistic heavy-ion collisions allow for one of the only settings for the study of the
many-body dynamics of the strong force. Currently, collisions are performed at RHIC with
two gold (Au) ions at with top center-of-mass energy of 200 GeV, and at the LHC with two
lead (Pb) ions at 2.76 TeV. Before the collision, the two nuclei are highly Lorentz contracted
nuclei as they move at nearly the speed of light. Once a collision occurs, the colliding
nucleons inside of the nuclei deposits a large amount of energy in the collision region. This
then creates a medium, which rapidly expands, cools, and isotropizes until it reaches the
so-called cross-over temperature, calculated from first principles lattice QCD simulations to
be Tc ≃ 155 MeV ≈ 2 ⋅1012 ○C [26], whereby the quarks and gluons which were once liberated
form hadrons. As previously mentioned, there now exists strong evidence that the medium
created in these collision is a QGP [42].

For few-body systems, like the high energy collisions of leptons, the QCD dynamics of
the system can be accurately described in terms of perturbative QCD. However, for the
many-body problem found in heavy-ion collisions, at present, it is not known how to de-
scribe the entire evolution of the system in terms of the underlying theory of QCD. This is
because current methods for exactly solving QCD are ill-suited for dynamical systems due to
so-called sign problems [43]c. It is likely that even if these problems were circumvented, the
computational resources needed would be insurmountable even with fastest current super-
computers. Thus it is necessary to develop effective models for the evolution of the system,
which can be validated by comparison to data. This modeling has progressed significantly
over the past decade, with a few standard paradigms have been emerged, which we will now
cover.

1.4.1 Initial dynamics: the Color Glass Condensate

A systematic QCD approach to describe the very early-time evolution of the matter in an
ultrarelativistic heavy-ion collisions is through the Color Glass Condensate effective field
theory (CGC EFT) [9]. The CGC EFT is formulated in the infinite momentum frame (with
appropriate gauge choice) and relies on a separation of energy scales between hard and soft
partons, which are primarily gluons. This is experimentally well justified, as demonstrated
from parton distribution functions (PDFs) extracted from deep inelastic electron-proton
scattering (DIS) experiments. Results from the HERA experiment [2] are shown in Fig. 1.2,
where it is clear that at small Bjorken x d, the gluons dominate the hadronic wavefunction.
In the high energy (Regge-Gribov) limit, x becomes very small. Typical values of x at RHIC
energies are x ∼ 10−2, while for the LHC x ∼ 10−3 − 10−4. This implies that it is reasonable to
consider a high energy nucleus as being composed primarily of high density gluon matter.

However, the growth in the gluon density at small-x must be tamed in order for the
cross-section to not violate the Froissart-Martin “black-disk” limit. Non-linear effects in

cA sign problem also exists for finite baryon density lattice QCD calculations, which would also need to
be avoided in order to simulate the entire evolution of the heavy-ion collision.

dIn DIS kinematics, x = Q2

2P ⋅q , where P is the the hadron four-momentum, and Q2 = −q2 is the exchanged
photon virtuality, where q is the space-like momentum of the photon. In the infinite momentum frame, this
becomes equivalent to the partonic momentum fraction (neglecting hadron mass effects).
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Figure 1.2: Parton distribution functions measured from the HERAPDF 2.0 collaboration
at a fixed virtuality, Q2, as a function of x. Figure from [2].

QCD, which can be understood as the emergence of a non-zero probability for gluons to
recombine, coupled with shadowing effects, solve this problem: this is the phenomena of gluon
saturation [44] (we refer the interested reader to [45] for a comprehensive review). In this
high gluon density state, an intrinsic resolution scale, known as the saturation momentum
scale, Qs, emerges. The scale Qs increases with energy (and thus momentum fraction x), as
well as the number of nucleons, A; this allows for the parametric relation

Q2
s ∼ A

1/3 (
1

x
)
λ

, (1.20)

where λ > 0 [46]. The maximum momenta in the nuclear wavefunction where the gluon
occupation is large is also set by Qs. At sufficiently high energies (small x), or large enough
nuclear size A, Qs becomes a semi-hard scale such that Qs ≫ ΛQCD; Qs is then the dominant
scale of the problem. By virtue of the asymptotic freedom of QCD, αS(Qs) ≪ 1, which
permits the application of weak coupling methods to systematically compute quantities in
this otherwise highly non-trivial many-body system. As we are in the nonlinear regime with
small coupling g, the largest momentum is of the order 1/g, as can be inferred from Eq. (1.5).
Parametrically, the gluon occupation is then f(k⊥ ≤ Qs) ∼ ⟨AA⟩ ∼ 1

g2 ∼
1
αS

≫ 1.e

Consider now a hadron in the infinite-momentum frame with momentum P µ = (P,0,0, P ).
In light-cone coordinatesf, this hadron has (only) large longitudinal momentum P + =

√
2P .

eThis is the condensate-like quality of the CGC; however unlike a Bose-Einstein condensate where most
of the photons are peaked around k = 0, here most of the gluons are peaked around k = Qs.

fThe light-cone coordinates for a general four-vector vµ are defined as vµ = (v+, v−,v⊥), where v± =
1√
2
(v0 ± v3). Taking the inner product between momentum and position, p ⋅ x = p+x− + p−x− − p⊥ ⋅ x⊥; thus

when p− has the interpretation as light-cone energy, x+ can be understood as light-cone time. Similarly, when
p+ has the interpretation as longitudinal momentum, x− can be interpreted as the longitudinal coordinate.
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Fast (large-x) partons, typically the valence quarks, carry the majority of this light-cone
longitudinal momentum. They then act as sources for soft partons (q+ ≪ P +); from the
HERA PDFs in Fig. 1.2, these will primarily be small-x gluons [47, 48, 49].

In high energy nuclear collisions at RHIC and the LHC, before the collision the nuclei are
moving near the speed of light, thus we consider nuclei in a collision to move along the +/−
light cones, as depicted in Fig. 1.3. As the large-x valence partons have a large light-cone
momentum, we treat them eikonally, whereby their light-cone momentum doesn’t change by
emitting (or absorbing) a small-x gluon. There is however a separation of time scales due
to different coherence lengths [48, 49] – the fast moving, large-x valence partons are seen
as “frozen” with respect to the small-x partonsg; as an eikonal current, they take the form
J± ∼ δ(x∓). As there are presumably a large number of sources, we may additionally treat
them classically. These sources are then simply represented as eikonal currents with classical
color charge density ρ, of the form

Jµa = δ±µρa(x
±,x⊥)δ(x

∓) . (1.21)

Gauge invariance is maintained as the sources ρ are stochastic variablesh which have zero
expectation value. From the viewpoint of the soft gluons, the fast moving valence partons
are highly Lorentz contracted, so ρa(x±,x⊥) = ρa(x⊥) is generally assumed. Since we argued
that the gluons in the nuclei are highly occupied, by the correspondence principle they can
be treated as classical gauge fields, Aµ. We can then appeal to semi-classical methods; thus
the equations of motion for the gluon fields are given by the classical Yang-Mills equations,

[Dµ, F
µν] = Jν . (1.22)

Expectation values of an operator O are taken as a classical-statistical average over ρ, given
in terms of a weight functional of ρ, WΛ+[ρ], as

⟨O⟩ = ∫ [Dρ]WΛ+[ρ]O[ρ] , (1.23)

where O[ρ] is the expectation value for O for a given charge configuration ρ. Here Λ+ is the
scale which separates the fast moving (k+ > Λ+) valence charges and the soft fields (k+ < Λ+).
Because we are dealing with colored objects, we must average over all possible configurations
of charges to ensure gauge invariance.

Without detailed knowledge of how these color charges are distributed in the nucleus, a
simple way to model the color charge densities is to assume that the effective color charge seen
by a colored probe is a random walk. This is the McLerran-Venugopalan (MV) model [48, 49].
Thus, we assume that only two-point Gaussian correlations exist,

⟨ρa(x
±,x⊥)⟩ = 0 , ⟨ρa(x

±,x⊥)ρb(y
±,y⊥)⟩ = g

2µ2δabδ(x
± − y±)δ2(x⊥ − y⊥) , (1.24)

where µ2 is the fluctuations in the color charge per unit area, which scales parametrically
like A1/3 for large nuclei. For the MV model, the weight functional is a Gaussian functional
of ρ,

WΛ+[ρ] = exp(−∫ d2x⊥
ρa(x⊥)ρa(x⊥)

2µ2
) . (1.25)

gThis separation of characteristic timescales is a glass-like feature of the CGC.
hAdditionally, because of the stochasticity of the sources, they are akin to a spin-glass [47].
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Figure 1.3: Cartoon depiction of an ultrarelativistic nuclear collision on the light cone.

The MV model is suitable for moderate values of x ∼ 10−2, however for smaller values of x,
quantum evolution is needed – this is accomplished through the so-called JIMWLK [50, 51,
47, 52, 53] evolution equation. This Wilsonian renormalization group equation removes the
dependence on Λ+, which otherwise is logarithmic. Remarkably, this evolution equation can
be formulated in terms of the weight functional WΛ+[ρ], such that the equations of motion
remain the classical Yang-Mills equations. The MV model is generally used as an initial
condition for JIMWLK evolution, which is then solved numerically through reformulation
as a Langevin equation [54]. In this thesis we will however neglect the effects of evolution.

Dense-dense

Returning to the classical Yang-Mills equation, following Fig. 1.3, we now set can solve this
boundary value problem for the specific case of valence charge current

Jµ = δ+µρ(1)(x⊥)δ(x
−) + δ−µρ(2)(x⊥)δ(x

+) . (1.26)

We take Fock-Schwinger gauge, x+A− + x−A+=0, so A+
(1) = 0 and A−

(2) = 0 [55]. Trivially,

in region I of Fig. 1.3, Aµ = 0. From the current in Eq. (1.26), the isolated gauge fields in
regions II and III of Fig. 1.3 are pure gauge transverse fields [48, 49],

A±
m(x⊥) = 0 , (1.27)

Ai(m)(x⊥) =
i

g
U(m)(x⊥)∂

iU †
(m)(x⊥) , (1.28)

where m = 1,2 referring to the x3 = +z and −z moving nuclei respectively. Here the Wilson
lines are given by

U(m)(x⊥) = exp (−igΦ(m)(x⊥)) . (1.29)
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The field Φ(m) is generated by the valence charges,

∂2
⊥Φ(m) = gρ(m)(x⊥) , (1.30)

which is determined using solutions to the classical Yang-Mills equations, ∂iAi(m) = gρ(m)(x⊥).
The combined gauge field for regions I,II, and III is then

A± = 0 , (1.31)

Ai = θ(x−)θ(−x+)Ai(1)(x⊥) + θ(x
+)θ(−x−)Ai(2)(x⊥) . (1.32)

In order to solve for the classical Yang-Mills equations inside the forward light cone,
region IV, we first much match singularities on the light cone, i.e. at τ = 0i [55, 56]. These
singularities exist at x+ = 0 and x− = 0, at x+ = 0 for x− > 0, and at x− = 0 for x+ > 0. The
result is well known [55], and most compactly written in τ − η coordinates (in the equivalent
Aτ = 0 gauge) as

Ai(τ = 0,x⊥) = Ai(1)(x⊥) +A
i
(2)(x⊥) , (1.33)

Aη(τ = 0,x⊥) = [Ai(1)(x⊥),A
i
(2)(x⊥)] . (1.34)

Given an initial configuration of ρ(m)’s, the boundary conditions Eqns. 1.33 and 1.34 serve
as an initial condition for further evolution of classical Yang-Mills evolution in the interior
of the forward light cone. Despite the system being weakly coupled, it is highly correlated.
Keeping all order in ρ’s for both nuclei (this is the origin of the moniker ‘dense-dense’) pre-
cludes perturbative methods. This weakly coupled system can be solved exactly numerically,
as it is well known how to solve classical Yang-Mills. Pioneering numerical work was per-
formed in [57]. These studies generally are performed in a 2+1D boost invariant spacetime,
and have been applied to a variety of problems, c.f. [58, 59, 60, 61, 62]. Recent progress
has been made towards extending such simulations to 3+1D spacetime [63]. At present,
the CGC initial conditions coupled with realistic nuclear color charge modeling and 2+1D
classical Yang-Mills evolution are used as an initial condition for viscous hydrodynamics [5],
with great phenomenological success [64, 65].

The Glasma

A striking observation can already be made from the boundary (τ = 0) conditions, Eqns. 1.33
and 1.34 [55]: the strong color fields which exist in the pre-collision nuclei will produce very
strong longitudinal chromoelectric and chromomagnetic fields already at the first instant
of the collision, τ = 0. By the approximate boost invariance, the fields are extended far
in the longitudinal extent. As previously mentioned, the color charges are localized in the
transverse plane to “domains” of extent 1/Qs. Thus, the localized parallel chromoelectric
and chromomagnetic fields form so-called “glasma flux tubes” [66]. Such field configurations
already have non-trivial properties, for instance they will have large topological charge, which
may lead to anomalous fermion production via the chiral anomaly of QCD [66, 67].

iIt is also common to formulate this problem in Bjorken coordinates (Milne metric), where τ =√
(x0)2 − (x3)2 =

√
2x+x− is the proper time and η = 1

2
ln(x+/x−) is the spacetime rapidity. In this case

our gauge choice is easily understood as Aτ = x+A− + x−A+ = 0.
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These strong fields at τ = 0 will also produce the matter that eventually becomes the QGP.
The details of how this happens has slowly emerged over the past decade. First, as the initial
glasma flux tubes are highly anisotropic, they are unstable in the presence of small vacuum
fluctuations [68]. These fluctuations begin to break the approximate boost invariance of the
system, which leads to plasma instabilities which breaks up the flux tubes structures. The
plasma instabilities then cause exponential mode growth in the infrared, whereby the system
becomes highly over-occupied for modes with k < Qs

j over a very short time. This forms
the over-occupied state of matter which is referred to as the Glasma – the state of matter in
between the CGC and the QGP. Using classical-statistical methodsk, it was observed that
the system then begins to thermalize and isotropize through a turbulent cascade. The system
then reaches a non-thermal fixed point via a universal attractor, whereby the results become
insensitive to the details of the initial conditions [39, 70, 71]. Perhaps most remarkably, these
simulations were able to numerically determine, from the universal scaling exponents of the
distribution function, which thermalization scenario the classical Yang-Mills dynamics leads
to [71].

The initially over-occupied gluons will however scatter, produce quarks, and in general
become more dilute as the system expands. At the point in the evolution when the gluon
occupation becomes parametrically of order f ∼ 1, classical-statistical methods are no long
applicable. Instead, an effective kinetic theory description can be applied [72]; however, there
is a regime where classical-statistical and effective kinetic descriptions are simultaneously
valid [73, 74]. As the system continues to move towards isotropy and thermal equilibrium,
and the coupling increases, it has been shown that there is a smooth mapping between this
effective kinetic theory description and hydrodynamics [75, 76]. In practice, simulations
of heavy-ion collisions directly map the initial conditions to hydrodynamics, neglecting the
kinetic regime. Very recently, an effective kinetic theory framework has been established
to smoothly connect the initial CGC/Glasma dynamics to viscous hydrodynamics [77, 78].
Thus, from the weak coupling perspective, the bulk approach to equilibrium is now fairly
well understood.

Dilute-dense

Let us now consider asymmetric systems, like proton–lead at the LHC or proton/deuteron
/helium-3–gold at RHIC, generically called pA collisions. As previously mentioned, para-
metrically Q2

s ∼ A
1/3. Hence, it is likely that in a pA collision, the projectile (p/d/3He) has a

smaller Q2
s than the target (Au/Pb) nucleus. In the CGC EFT, the relation (Qp

s)
2 ≪ (QA

s )
2

can be understood formally in terms of the respective ρ’s. In this so-called dilute-dense
limit [79, 80], ρp is assumed to be much less than ρA. This implies that the Wilson line of
the projectile can be expanded, and truncated, in powers of ρp. Without loss of generality,
let us assume that ρ(1) = ρp and ρ(2) = ρA from the discussion in the previous sub-section

jThis result hold for a more general over-occupied system with characteristic momentum scale Q, and
may have applications to other systems than heavy-ion collisions.

kSince this is an initial value problem for classical fields, it is possible to map the problem to a classical-
statistical problem [69]. The effects of the first order quantum corrections are included by calculating
observables using expectation values evaluated over an ensemble of classical configurations with a common
stochastic initial condition which is representative of the quantum phase-space distribution.
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around Fig. 1.3. This simplifies the fields in regions II and III, such that Eq. (1.28) takes
the form

Aip(x⊥) = ∂iΦp −
ig

2
(δij −

∂i∂j
∂2
⊥

) [∂jΦp(x⊥),Φp(x⊥] +O(Φ3
p) , (1.35)

AiA(x⊥) =
i

g
UA(x⊥)∂

iU †
A(x⊥) , (1.36)

where Φp(x⊥) =
g
∂2⊥
ρp(x⊥). Keeping terms of order Φp (order ρp) allows for a straightforward,

albeit lengthy, solutions to the fields for region IV, the forward light cone. We will not
reproduce these results here, but full expressions can be found, in multiple gauges, in [79,
80, 81].

Having an analytical solution then for Aµ(x+, x−,x⊥) allows us to define the single inclu-
sive distribution using the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [79,
81]. A particularly clear exposition is given in [81], where it is explicitly shown that at this
order only “surface” terms, i.e. production at τ = 0, contribute. The final compact result,
which we will use in Chap. 5, is

Ek
dN

d3k
=

1

8π3k2
⊥
(δijδlm + εijεlm)Ωb

ij(k⊥) [Ω
b
lm(k⊥)]

∗
. (1.37)

Here δij(εij) is the Kronecker delta (antisymmetric tensor), Ωb
ij(k⊥) is the Fourier transform

of

Ωij(x⊥) = g [
∂i
∂2
⊥
ρap(x⊥)]∂

jWba(x⊥)t
b , (1.38)

and

Wba(x⊥) = 2tr (U †(x⊥)tbU(x⊥)ta) (1.39)

is the adjoint Wilson line describing the target. The quantity Ω has a simple interpretation
as the gauge field of the projectile being color-rotated by the Wilson line of the target.

However, this result is also manifestly symmetric for k⊥ → −k⊥. Thus at this order in
ρp, the odd component of the double inclusive distribution, responsible for the generation
of the Fourier harmonics v3{2} (we will introduce this quantity in detail in Chapter 4), is
exactly zero [81]. Since v3 has been experimentally observed in all pA systems, it is clear
that the lowest order in the dilute-dense power counting does not account for all of the
observed physics qualitatively. However, v3 is non-zero in the dense-dense limit for proper
times τ > 0 [61, 62], so there must be some order in ρp which gives rise to a non-zero v3.
Recently, it was shown that by including ρ2

p contributions, the odd component of the double
inclusive distribution, and thus v3, does not vanish [81]. The result is rather cumbersome but
is provided in Eq. (5.3). We note that the full computation of the order ρ2

p (Φ2
p) contribution

is still incomplete [82], and remains an outstanding challenge. Nevertheless, we see that by
considering the leading non-trivial pieces of the dilute-dense limit, qualitative expectations
of finite even and odd azimuthal harmonics are achieved.

We conclude by noting that there is a further perturbative limit, the so-called dilute-
dilute limit, or Glasma graph approximation. In this limit, only a single gluon exchange
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is considered in the amplitude. Valid for k⊥ > Qs, this approximation has been successful
in explaining “ridge” correlations at the LHC for pA and pp collisions [83, 84, 85, 86, 87,
88]. However, as we will show in Chap. 4 and Appendix G, it is insufficient to describe
multiparticle correlations at RHIC or the LHC.

1.4.2 Bulk evolution and hadronization

Following the early-time non-equilibrium dynamics, the system created during a heavy-ion
collision becomes inherently quantum mechanical and strongly coupled. At this stage, cur-
rently available QCD-based methods are insufficient to describe the system microscopically.
One effective description of the system, originally proposed by Landau, is to consider a
long-wavelength, low energy effective description of the system in terms of relativistic hy-
drodynamics. While progress has been made in understanding how to derive hydrodynamics
as a long-wavelength effective theory of a quantum field theory (see e.g. [89] and references
within), a formulation from QCD remains an open problem.

The modern description of hydrodynamics for heavy-ion collisions comes from more basic
assumptions. Consider first a non-interacting system of particles. If the de Broglie wave-
length, λDB, is much shorter than the mean free path (typical interaction length), `mfp,
the particles can be treated effectively as being classical objectsl. If we have a many-body
system of such classical particles, then the overall system size L will be larger than `mfp (and
λDB). Thus, the individual particle nature is lost and the dynamics of the system becomes
that of a continuous medium, a fluid. However, in order to have a well-defined low energy
effective theory (this description should only be valid for “soft” physics, p⊥ ≲ 2 GeV), the
assumption of local thermal equilibrium is needed to be able to define average quantities
within a single fluid cell [90]. For a strongly interacting system like the QGP, this is believed
to approximately be the case.

To formulate the equations of motion for hydrodynamics for heavy-ion collisions, we first
consider the basic requirements of local conservation of energy, momentum, and local charge
conservation (for instance baryon number or electric charge),

∂µT
µν = 0 , ∂µj

µ
i = 0 (1.40)

where T µν is the energy-momentum tensor and jµi is the local charge current for charge i.
Additionally, we require that the second law of thermodynamics is preserved with respect to
the entropy current Sµ,

∂µS
µ ≥ 0 . (1.41)

The quantities must however be formulated in terms of the hydrodynamic fluid four-velocity,
uµ, which we can generally define as the four velocity as uµ = γ(1,v) such that uµuµ = 1;
here γ = (1 − v2)−1/2. Then the constitutive relations are determined using an expansion in
gradients. To lowest order (ideal hydrodynamics), the different vector and tensor structures,
T µν , jµi , and Sµ, can be defined in terms of uµ(x) and the thermodynamic variables, ε(x),

lIn the opposite limit, the wavefunctions non-trivially overlap and must be treated quantum mechanically.
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the energy density, P (x), the pressure, and s(x), the local entropy density:

T µν = (ε + P )uµuν − Pgµν , (1.42)

jµi = niu
µ , (1.43)

Sµ = suµ . (1.44)

However, for modern heavy-ion collision phenomenology, it has been argued that dissipa-
tive effects, especially viscosity, are important [91, 92, 93, 94]. To include these effects and
ensure causality [95], a second order expansion in gradients is needed [96, 97]. The exact form
of second order viscous hydrodynamics is still a topic of active investigation (c.f. [98, 99]),
the shear viscosity transport coefficient, η, has generated great interest recently. While η
has long been expected to be large [91], the relevant ratio in the equations of motion, η/s,
was found to very small in phenomenological studies using viscous hydrodynamics [94], of
the orders 10−1. Remarkably, this coincides with the lower bound calculated in N = 4 Super
Yang-Mills [100] of η/s ≥ 1/4π. While first-principles QCD calculations of the transport
coefficients remain elusive, recent progress has been made with lattice SU(3) Yang-Mills
simulations [101, 102] and using functional methods for QCD [103]; the latter of which has
even been applied to hydrodynamic modeling [104]. If the actual QCD plasma value for η/s
turns out to be close to the phenomenological value, this would be the lowest η/s of any
physical system– thus the QGP would be the most perfect liquid in nature.

Closing this system of equations requires an equation of state, relating the pressure,
energy density, and the charge densities, ni =

√
jµi kµ,i, which are defined in terms of the

temperature T and any relevant chemical potentials. As previously mentioned, the equation
of state has been calculated for QCD in thermal equilibrium at zero and small baryon
chemical potential using first principles lattice QCD simulations [26, 27]. For ultrarelativistic
heavy-ion collisions, the baryon number density is believed to be vanishingly small m, and
the plasma to be locally electrically neutral, so in practice the local conserved charges are
not considered. However, when at lower energies or if including chiral effects, these currents
need to be included.

Once the equations are determined, one has to supply an initial condition for quantities
like T µν and uµ. As mentioned in the previous section, the state-of-the-art of initial state
modeling comes from combining Glauber-like [105] sampling of initial nucleon positions with
CGC and Glasma dynamics [5]. The hydrodynamic description of deconfined, strongly inter-
acting quark and gluon matter breaks down when the temperature or energy density reaches
a low enough value such that the particles stop interacting collectively and must instead be
treated as individual particles – this is the (kinetic) freeze-out. Due to confinement, it is
assumed that there is an instantaneous hadronization. In practice, a single temperature or
energy density is chosen whereby the matter in a given fluid cell freezes out and becomes part
of the four-dimensional freeze-out hypersurface, Σµ. Once the freeze-out hypersurface has
been determined, the standard method to calculate the momentum distribution of hadrons

mThis vanishing baryon number density necessitates the use of the Landau (energy) frame – this choice
of frame becomes important when we include viscous effects. For a more complete discussion on choices of
frame, see e.g. [90].
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is through the Cooper-Frye procedure [106], given by

d3N

d2p⊥dy
= ∫

Σ
f(x, p)pµdΣµ , (1.45)

where y is the rapidity, f is the distribution function for a particular species of hadrons
(the equilibrium part is assume to be a Bose or Dirac distribution, however corrections
from dissipative effects are also included for second order hydrodynamics), pµ is the hadron
four-momentum, and N is the number of hadrons. With this momentum distribution, it is
possible to compute various observables. We conclude by noting that current state-of-the-art
simulations generally include additional resonance decays, as well as hadronic rescatterings,
before “detection”. These effects are taken into account by using well-known packages like
UrQMD [107, 108].

1.4.3 Wrap-up

As discussed, the standard model of heavy-ion collisions is a collection of effective descrip-
tions, all matched together by simple physical considerations like conservation of energy.
While seemingly ad-hoc, it has been shown to be compatible with a large variety of data
in heavy-ion collisions at both RHIC and the LHC, ranging over a factor of ∼ 100 in en-
ergy. This model has even become somewhat predictive; for a recent example of LHC Xe-Xe
collisions, see [109].

However, in addition to understanding the regime of validity of this paradigm, we must
understand where it breaks down. For the CGC EFT, it is clear that for lower energies,
many of the approximations made require large corrections, likely requiring a completely
new formalism. For low energy collisions, like what will be explored in the upcoming RHIC
Beam Energy Scan II program, only phenomenologically motivated models for the initial
state dynamics currently exist [110]. Additionally, in these low energy collisions, the pure
hydrodynamic assumption becomes less reliable as some fluid cells will freeze out or may
never become hydrodynamic in the first place.

Another regime where this paradigm may break down is in smaller systems, like proton–
nucleus or proton–proton collisions. For these systems, it is unclear if the second order
hydrodynamic formulation is enough, as gradients and viscous corrections can be very large,
and cavitation (negative pressures) is possible, signaling a clear breakdown of the effective
description [111, 112, 78]. However, the applicability of hydrodynamics has been a subject of
intense recent study, with conceptual advances coming from the possibility of off-equilibrium
attractors in QGP-like plasmas (see e.g. [113] and references within). Potentially a more
pressing problem, however, is the fact that a key signature of the QGP, jet quenching, has
not been observed experimentally in small systems [114]. As an alternative, in Chapters 4
and 5, we will discuss the possibility that these small systems can be described primarily in
terms of the pre-equilibrium dynamics.
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Chapter 2

Sphalerons and the approach to
equilibrium

The following chapter is based off of

• M. Mace, S. Schlichting, R. Venugopalan. Off-equilibrium sphaleron transitions in the
Glasma. Phys.Rev. D93, 074036 (2016). Copyright (2016) by the American Physical
Society

• J. Berges, M. Mace, S. Schlichting. Universal self-similar scaling of spatial Wilson
loops out of equilibrium. Phys. Rev. Lett. 118, 192005 (2017); arXiv:1703.00697
[hep-th]. Copyright (2017) by the American Physical Society

Topological transitions are ubiquitous in nature and believed to be responsible for a
variety of phenomena across the most diverse energy scales. In the context of non-Abelian
gauge theories, a prominent example are transitions between energy degenerate ground states
of definite Chern-Simons number, mediated by unstable, spatially localized classical field
configurations of finite energy called Sphalerons [115, 116, 117, 118, 119]. Interest in these
so-called sphaleron transitions first arose in the context of electroweak baryogenesis [120,
121, 122]: the high temperatures make these transitions energetically favorable and may
lead to the large violations in baryon number necessary to explain the matter-antimatter
asymmetry of the universe [123].

Sphaleron transitions can also be significant in QCD at high temperatures and energy
densities [124, 125]. In this case, there is no baryon number violation; however, due to
the chiral anomaly and the Atiyah-Singer index theorem, these sphaleron transitions can
generate significant amounts of axial charge. Because such transitions are governed by
ultrasoft magnetic modes [121], their rate in a non-Abelian plasma at finite temperature
can be computed by solving classical equations of motion in real time [126]. Hard quantum
modes still play a role due to Landau damping effects [127]; nevertheless, their effect can be
accounted for in the hard thermal loop effective theory [128] and the sphaleron transition
rate can still be computed in a real time simulation non-perturbatively [129]. Estimates
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now exist for an SU(3) gauge theory at high temperatures where weak coupling methods are
justified [130].

A striking observation is that if the axial charge generated from sphaleron transitions is
produced in the presence of a sufficiently strong external magnetic field, a net vector charge
current can be produced in a hot QCD plasma [131, 132]. This phenomenon is the Chiral
Magnetic Effect (CME), introduced previously in Chapter 1. This pheomena can be studied
in ultra-relativistic heavy-ion collisions, where the magnetic fields in non-central collisions are
very large at early times after the collision, and the energy densities are also sufficiently large
that deconfined QCD matter is created. Experimental searches for the CME are ongoing
at RHIC and the LHC, and intriguing hints suggestive of the CME and other anomalous
transport effects have been seen [133, 134, 135, 136]. However conventional explanations
for the observed signatures have also been put forward [137, 138, 139, 140, 141] and further
progress relies in part on an improved theoretical understanding of the expected magnitude
and features of the signal. A status report on theoretical models of the CME and on-going
experimental searches can be found in Ref. [142].

A major complication for theoretical descriptions of the chiral magnetic effect in heavy-
ion collisions is the very short lifetime of the external magnetic field at the highest RHIC
and LHC energies. Computations suggest that the magnitude of the magnetic field becomes
smaller than the values relevant for the CME (eB ≥ m2

π) on very short time scales of ∼ 0.1
to 0.2 fm

c of the LHC and RHIC collisions respectively [143] though in principle, very large
electrical conductivities in the QGP can extend this time scale to slightly longer times [144].
Hence to understand whether the CME has observables consequences in heavy ion collisions,
one needs to obtain an estimate of the sphaleron transition rate at very early times in the
collision when the system is far off-equilibrium.

A systematic QCD approach to the very early time evolution in ultra-relativistic heavy
ion collisions is obtained in the Color Glass Condensate (CGC) effective field theory [9],
previously introduced in Chapter 1. In this description, very high occupancy gluons in the
nuclear wavefunctions are released in the collision generating non-equilibrium matter called
the Glasma [48, 55, 57, 66]. The dynamics of the Glasma is controlled by a saturation
scale Qs, which represents the hard momentum scale up to which gluons in the nuclear
wavefunction have maximal occupancy. This saturation scale grows with the energy of the
collision. When Qs ≫ ΛQCD, where ΛQCD is the intrinsic QCD scale, the QCD coupling
αS(Qs) << 1 and weak coupling methods are applicable. Because the occupancy of gluons is
parametrically of order 1/αS(Qs) >> 1 in the Glasma, the early time dynamics of this matter
may be described by classical-statistical methods [58, 145, 146, 147, 70]. One therefore has a
clean theoretical limit in QCD, whereby the properties of the non-perturbative Glasma can
be computed systematically [148].

In this chapter we present a first real time non-perturbative computation of the far
from equilibrium sphaleron transition rate in the Glasma. For simplicity, we shall consider
sphaleron transitions in a fixed box rather than the realistic (but computationally far more
challenging) longitudinally expanding case a. We will employ a numerical lattice imple-

aFluctuations in the Chern-Simons number for the longitudinally expanding, albeit boost invariant,
Glasma were considered previously in [59]. Because boost invariant gauge field configurations are 2+1-
dimensional configurations, the second homotopy group of SU(2) is trivial. Thus in this case, non-zero
integer valued topological transitions are not allowed; fractional values of topological charge can nevertheless

20



mentation of the classical-statistical dynamics and adapt techniques previously developed in
the context of classical Yang-Mills simulations to extract the thermal sphaleron transition
rate [149, 150, 3, 151], and in real-time studies of electroweak baryogenesis [152, 153, 154,
155, 156, 157, 158].

A deeper understanding of the rate of sphaleron transitions requires that one explore
simultaneously the scales associated the hard modes as well as the softer electric and mag-
netic screening scales in the Glasma. How these scales develop with time has been discussed
previously in the context of thermalization of the Glasma in both analytical [159, 160] and
numerical approaches [39, 161, 162]. We will revisit this problem and demonstrate numeri-
cally that a clear separation of scales takes place with the temporal evolution of the Glasma.

In particular, we will compute the spatial Wilson loop which provides the scale determin-
ing magnetic screening in a hot plasma in equilibrium. Albeit the non-equilibrium temporal
evolution of the spatial Wilson loop has been studied previously [39], we will go further
and extract the scaling exponent that controls the temporal evolution of the corresponding
string tension in the classical theory. We will show that the time evolution of the sphaleron
transition rate is controlled by this string tension, scaling dimensionally as the string tension
squared. Unlike the thermal case, topological transitions in the Glasma are determined by
this magnetic scale alone and are robustly described by classical-statistical dynamics as long
as occupancies are large.

The outline of this chapter is as follows: in Section 2.1, we will give a brief overview
of sphaleron transitions, in and out of equilibrium. In Section 2.2, we discuss in some
detail how we measure the Chern-Simons number on a real time numerical lattice. We
shall outline two different approaches, a “slave field” approach and a “calibrated cooling”
approach and demonstrate, as a warm-up, our technology in the well understood case of
thermal equilibrium initial conditions. Then in Section 2.3, we will introduce our non-
equilibrium initial conditions and compute physical hard and soft scales as well as the far
from equilibrium sphaleron transition rate. We will compare and contrast our results to
those obtained in thermal equilibrium. In Section 2.5, we will summarize our results, discuss
their implications and outline future work. Some details of the numerical procedure and
essential tests are described in two Appendices.

2.1 Sphaleron transitions and axial charge dynamics

In SU(Nc) gauge theories with Nf light flavors of fundamental fermions, the conservation
of the axial current associated with each quark species

jµ5,f = qfγ
µγ5qf , (2.1)

is violated due to the axial anomaly as well as the explicit symmetry breaking introduced
by the quark masses mf

∂µj
µ
5,f = 2mfqγ5q −

g2

16π2
F a
µνF̃

µν
a , (2.2)

be generated by fluctuations in the color electric and color magnetic fields.

21



where F a
µν = ∂µAaν − ∂νA

a
µ + gfabcA

b
µA

c
ν denotes the non-Abelian field strength tensor and

F̃ µν
a = 1

2ε
µναβF a

αβ is its dual [163]. Since in the high-temperature phase the explicit breaking
due to the quark masses is usually neglected, we will denote the combined axial current of
all light flavors as jµ5 in the following. In this limit, the anomaly equation takes the form

∂µj
µ
5 = −

g2Nf

16π2
F a
µνF̃

µν
a , (2.3)

and states that fluctuations of the SU(Nc) gauge fields characterized by FµνF̃ µν can induce
local imbalances of the axial charge density (j0

5) as well as global imbalances of the net axial
charge

J0
5 (t) = ∫ d3x j0

5(t, x) . (2.4)

As noted previously, it was realized that in the presence of additional U(1) electro-magnetic
fields, such imbalances of axial charge densities (j0

5) can lead to a variety of novel transport
phenomena associated to the Chiral Magnetic (CME) [131, 132] and related effects [142].

Since the anomaly relation in Eq. (2.3) suggests that the fluctuations of axial charges
are sourced by fluctuations of FµνF̃ µν , basic features of the generation of an axial charge
imbalance can be understood by investigating the non-Abelian dynamics of gauge fieldsb.
Concentrating on the Yang-Mills sector from now on, it is convenient to express the right
hand side of the anomaly equation in terms of the Chern-Simons current

Kµ =
g2

32π2
εµνρσ (AaνF

a
ρσ −

g

3
fabcA

a
νA

b
ρA

c
σ) , (2.5)

which satisfies the relation

∂µK
µ =

g2

32π2
F a
µνF̃

µν
a , (2.6)

such that the overall difference of net axial charge is given by

J0
5 (t2) − J

0
5 (t1) = −2Nf ∫

t2

t1
dt∫ d3x ∂µK

µ . (2.7)

Since the spatial integral over the (four) divergence of the Chern-Simons current (∫ d
3x ∂µKµ)

defines a total time derivative, the right hand side of Eq. (2.7) can be expressed in terms of
the difference of two boundary terms

∫

t2

t1
dt∫ d3x ∂µK

µ = NCS(t2) −NCS(t1) , (2.8)

where NCS denotes the Chern-Simons number

NCS(t) = ∫ d3x K0(t, x) , (2.9)

bWe note that in general there is a nontrivial interplay between the dynamics of the gauge sector and
previously existing imbalances of axial charges [164, 165, 166]. However, since we are mostly interested in
the generation of such axial charge imbalances we will not consider these effects within this study.
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Figure 2.1: Spatial profile of g2

8π2 Ea
i (x)B

a
i (x) for a 3D Yang-Mills configuration in thermal

equilibrium (N = 16, β = 2). Left: thermal field strength fluctuations contributing to E⃗ ⋅ B⃗
on all length scales. Right: spatial profile of E⃗ ⋅ B⃗ during a sphaleron transition after cooling
to remove short distance fluctuations.

which is a unique property of the gauge field configuration at the boundary. When consid-
ering a vacuum state for instance, the Chern-Simons number NCS can be associated with
the homotopy class Hom(G) ∈ π3(SU(Nc)) ≃ Z of the gauge transformation G ∶ R3 ∪ {∞}→

SU(Nc) that transforms the configuration to the topologically trivial vacuum statec. (See
for example [167] for a comprehensive review.) Consequently, the Chern-Simons number of a
vacuum state is an integer which distinguishes between energy degenerate but topologically
inequivalent configurations.

When considering states of finite energy density, either in or out of thermal equilibrium –
dynamical transitions between different topological sectors can occur [120] mediated by the
sphaleron [115]. While sphaleron transitions manifest themselves in a change of the gauge
field topology, the Chern-Simons number of an excited state configuration is – in contrast to
vacuum states – no longer necessarily an integer. Instead, NCS(t) behaves as a continuous
function of time whose derivative, according to Eqs. (2.8) and (2.6), satisfies the relation

dNCS

dt
=
g2

8π2 ∫ d3x Ea
i (x)B

a
i (x) , (2.10)

where we will express 1
4F

a
µνF̃

µνa = Ea
i B

a
i with Ei

a = F 0i
a and Bi = 1

2ε
ijkFjk from now on.

Clearly, the integrand in Eq. (2.10) receives contributions not only from topological transi-
tions but also from ordinary fluctuations of the field strength that are unrelated to topology.

This is illustrated in Fig. 2.1 where we show a snapshot of the integrand g2

8π2Ea
i (x)B

a
i (x) for

a thermal 3D Yang-Mills configuration. Thus from Eq. (2.3), both ordinary fluctuations and
topological transitions contribute to the generation of an axial charge imbalance.

cWhile for gauge fields with periodic boundary conditions the gauge transformations map from the 3-torus
T3 to the gauge group SU(Nc), the set of homotopy classes of the map is still isomorphic to integers.
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For Yang-Mills theories in thermal equilibrium, sphaleron transitions dominate the late
time behavior of the Chern-Simons number [120, 121, 168] that is related to the generation
of a net axial charge. Since individual sphaleron transitions are uncorrelated with each
other, the long time behavior of the Chern-Simons number in thermal equilibrium can be
characterized by an integer random walk between different topological sectors. Accordingly,
the sphaleron transition rate can be defined from the NCS auto-correlation function [169, 170]

Γeqsph ≡ lim
δt→∞

⟨(NCS(t + δt) −NCS(t))2⟩eq

V δt
, (2.11)

in the spirit of a transport coefficient. Since the definition of Γeqsph involves a real time correla-
tion function, even in thermal equilibrium, this quantity is not accessible using first principles
calculations in Euclidean lattice gauge theory. (See for instance [130] for a discussion.) In-
stead, calculations of the equilibrium sphaleron transition rate have been performed using
either weak coupling numerical lattice techniques [126, 171] or by investigating theories with
a holographic dual [172].

Parametric estimates of the sphaleron transition rate in weakly coupled plasmas in ther-
mal equilibrium give

Γeqsph = κ α
5
ST

4 , (2.12)

where αS = g2/4π here denotes the coupling constant [127, 173, 174] and κ is a non-
perturbative constant. This parametric estimate is based on the argument [120, 121, 168]
that the typical spatial length scale corresponding to a sphaleron transitions is determined
by modes with wavelengths on the order of the inverse magnetic screening scale 1/g2T . The
time scale necessary to achieve a sphaleron transition turns out not to be 1/g2T as previously
argued [168], but a longer time scale 1/g4T , which accounts for the “Landau damping” of the
transition time due to the interaction of the soft magnetic modes with hard modes on the scale
of the temperature. This parametric scaling has also been confirmed independently by nu-
merical simulations [175, 176, 177, 130] which extract [130] κ = 0.21N3

c (N
2
c −1)(Ncg2T 2/m2

D)

within logarithmic accuracy in the coupling g; plugging in the value of the Debye mass mD

for very weak couplings, Nf = 0 and Nc = 3, one obtains κ ∼ 132 ± 4.

Our work here extends these studies to the case of an overoccupied non-Abelian plasma
that is far off-equilibrium. Since such a system is dominated by classical dynamics, the so-
phisticated real time lattice techniques [149, 150, 3, 151] previously used to study sphaleron
transitions in equilibrium can be straightforwardly adapted to the problem of interest here.
However the problem in our case is simpler because, unlike the thermal case, hard quan-
tum modes do not influence the sphaleron transition rate in the Glasma. The dynamics of
non-equilibrium sphaleron transitions is entirely determined by the classical-statistical sim-
ulations; indeed, for the time scales studied, the sphaleron rate in the Glasma is governed by
soft modes on the order of the magnetic screening scale determined from the spatial Wilson
loop. Before we present these results, we will first review the real time numerical techniques
that are essential to compute sphaleron transitions.
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2.2 Topology measurement on the real time lattice

In this section, we will outline the numerical classical-statistical methods that have been
developed for the real time simulations of topological transitions at high temperatures and
adapt these for our non-equilibrium context. One first solves the classical Yang-Mills equa-
tions on the lattice; in this first study, for simplicity, we will consider only the case of an
SU(2) gauge theory. While a lattice formulation of the problem is essential to describe
non-perturbative real-time phenomena, the lattice discretization, as we shall discuss, poses
problems for the extraction of topological information in the plasma. We will outline the so-
phisticated methods that have been devised to reliably extract Chern-Simons number on the
lattice for non-Abelian plasmas in equilibrium. In particular, we will discuss the independent
calibrated cooling and slave field methods and adapt these to the non-equilibrium Glasma
case. As a benchmark for our computations, we will reproduce and discuss key features of
the well known equilibrium results.

2.2.1 Classical-statistical lattice setup

We discretize the theory on a 3D spatial lattice with N sites and spacing a in each direction
following the Hamiltonian formulation of lattice gauge theory in temporal axial gauge. We
define the lattice gauge link variables Uµ(x) and electric field variables Eµ(x) such that they
transform according to

Eµ
(G)(x) = G(x)Eµ(x)G†(x) ,

U
(G)
µ (x) = G(x)Uµ(x)G

†(x + µ̂) , (2.13)

under time independent gauge transformations. Defining the variation of the lattice gauge
links with respect to the gauge fields as

δUµ(x)

δAaν(y)
= −iga τa Uµ(x) δ

ν
µ

δx,y
a3

, (2.14)

where τa denotes the fundamental generator of SU(Nc), we solve the classical Hamilton
equations of motion

∂tE
µ
a (x) = −

δH

δAaµ(x)
,

∂tUµ(x) = −iga τa
δH

δEµ
a (x)

Uµ(x) , (2.15)

derived from the lattice Hamiltonian

H =
a3

2
∑
j,x

Ea
j (x)E

a
j (x) +

2

g2a
∑
◻

ReTr[1 −U◻] , (2.16)

using a leap-frog updating scheme. Here U◻ is the plaquette variable, defined in Eq. (1.15).
With the classical solutions in hand, we can subsequently extract the observables of interest
from the lattice field configurations and perform an average over an ensemble of all field
configurations.
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2.2.2 Chern-Simons number measurement

While we are interested in the dynamics of topological transitions and the behavior of the
Chern-Simons number over the course of the non-equilibrium evolution, there are several
problems associated with the lattice definition of the corresponding observables–a clear dis-
cussion of these can be found in [151]. First of all, since the lattice is a discrete set of points,
meaningful topological concepts can only be defined for i) sufficiently smooth configurations,
for which gauge links are close to the identity and ii) slowly varying configurations, for which
neighboring plaquettes are nearly identical. These are the gauge field configurations which
effectively admit an interpolation between lattice sites. Further, there exists no local operator
definition of the Chern-Simons current K0(t, x) such that the spatial integral ∫ d

3x K0(t, x)
is a total time derivative for generic field configurations. Instead, local operator definitions
of the Chern-Simons current can only be made approximately equal to a total derivative for
sufficiently smooth and slowly varying field configurations.

Since these problems are particularly severe for classical-statistical simulations in thermal
equilibrium, different techniques known as the “calibrated cooling” [149, 151] and the “slave
field” [178, 3] method have been developed in this context to overcome this challenge on real
time lattices. We will briefly summarize below the basic ideas behind both methods. More
details on the technical implementation of both methods are given in the Appendices A and
B.

Calibrated cooling

Problems with the lattice definition of the Chern-Simons current arise primarily due to
ultraviolet fluctuations on the scale of the lattice spacing. However, fortuitously, the contri-
bution of these ultraviolet modes to the sphaleron transition rate is suppressed because the
sphaleron rate is dominated by the dynamics of modes on the order of the magnetic screening
length [120, 121, 168]. Hence an efficient way to deal with the aforementioned problems is
to suppress the effect of ultraviolet fluctuations on the topology measurement by use of a
“calibrated cooling” technique [149, 151].

The most efficient way to remove ultraviolet fluctuations in a gauge invariant fashion is
to follow the trajectory of the configuration along an additional “cooling time” direction τ
along which the gauge links evolve according to the energy gradient flowd

∂τUµ(t, x; τ) = −iga τaEµ,a
cool(t, x; τ) Uµ(t, x; τ) , (2.17)

Ecool
µ,a (t, x; τ) = −

δH

δAµa(x)
.

By this procedure, ultraviolet fluctuations are efficiently removed and one can then define

dWhile gradient flow techniques are also frequently used in Euclidean lattice gauge theory [179, 180, 181,
182, 183], we note that the calibrated cooling technique employed here differs in the following aspects. While
in 4D Euclidean lattice gauge theory, the gradient flow follows the steepest descent of the 4D gauge action, the
cooling trajectory of our gauge field configuration follows the steepest descent of the 3D lattice Hamiltonian,
such that three dimensional gauge field configurations at different times are cooled independently of each
other.
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the Chern-Simons number by following the gradient flow (gf) all the way to the vacuume

N gf
CS(t) −N

vac
CS (t) = −

g2a3

8π2 ∫

∞

0
dτ∑

x

Ecool
i,a (t, x; τ) Bcool

i,a (t, x; τ) .

While the Chern-Simons number of the associated vacuum configuration N vac
CS (t) is an integer

characterizing the topological properties of the gauge field configuration, the integral on the
right hand side contains the fluctuations above the vacuum and can be evaluated using an
O(a2) improved operator definition of the chromo-electric and chromo-magnetic fields inside
the integral as described in Appendix A. Typically the field configurations become smooth
already after cooling to τa2 ∼ 1. Thus ultraviolet lattice effects on the Chern-Simons number
expression from integrating Eq. (2.10) are small and the method is topological [151]. However
the numerical cost of cooling all the way to the vacuum is too large for this definition to be
practical and it is therefore useful to consider the following modifications instead.

Instead of cooling all the way to the vacuum (τ → ∞) it is sufficient to cool for a
shorter depth τc to efficiently remove ultraviolet fluctuations on the scale of a single lattice
spacing. For such cooled configurations, a local operator definition of the Chern-Simons
current behaves approximately as a total derivative; one can therefore define the change in
Chern-Simons number between two different times t1 and t2 by comparing the cooled images
of the configurations,

NCS(t2) −NCS(t1) =
g2a3

8π2 ∫

t2

t1
dt′∑

x

Ei,a(t
′, x; τc) Bi,a(t

′, x; τc) ,

as described in detail in App. A. By varying the amount of cooling τc applied to the con-
figuration, one in addition controls both the magnitude and typical wavelength of ordinary
field strength fluctuations that contribute to the Chern-Simons number measurement. We
shall investigate the dependence on the cooling depth τc in more detail below. We note
that one can check whether the definition of the Chern-Simons current indeed behaves as a
total derivative by adding occasional coolings all the way to the vacuum to compute NCS

(according to the previous definition in Eq. (2.18)). This measurement is re-calibrated to
ensure that any residual lattice errors do not accumulate over time. An illustration of this
calibrated cooling method is shown in Fig. 2.2.

In practice, we evolve the field configurations along the real-time axis t and perform
cooling up to a variable length τc for every 0.5 lattice units in time. Based on the cooled
images of the configurations, we then compute the change in Chern-Simons number according
to Eq. (2.18), as described in detail in Appendix A. We re-calibrate this measurement by
performing a cooling to the vacuumf for every 5 lattice units in time. When comparing the
computations using respectively the definitions in Eqns. (2.18) and (2.18), we observed that
the largest discrepancy was of the order of 0.1 (and typically much smaller than that). The
close agreement indicates that the method employed is indeed topological.

eCooling to the classical vacuum amounts to following the energy gradient flow in Eq. (2.17) up to the
point where the magnetic energy density vanishes identically to machine precision.

fSince in practice the cooling to the vacuum is extremely costly, we use up to two steps of blocking [151]
for our largest field configurations during this process. For more information, see Appendix A.
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Figure 2.2: Illustration of the calibrated cooling method.

Slave Field Method

In the calibrated cooling method, ultraviolet fluctuations are removed explicitly to arrive
at a topological definition of the Chern-Simons number. An alternative method referred to
as the “slave field” method was proposed by Woit [178] and developed further by Moore
and Turok [3]. The basic idea underlying this method is to extract the integer part of the
Chern-Simons number (which, loosely speaking, corresponds to the integer part N vac

CS (t) in
Eq. (2.18)) by measuring the winding number NW of the gauge transformation S(x) which
transforms the configuration to the topologically trivial sector, setting

NSF
CS = NW , (2.18)

where the acronym SF stands for Slave Field. Since the topological trivial sector of 3D
Yang-Mills theory satisfies the (minimal) Coulomb gauge condition that

Q =
1

3N3Nc
∑
j,x

ReTr[1 −U
(S)
j (x)] (2.19)

is minimal, finding the gauge transformation S(x) is then equivalent to the problem of fixing
Coulomb gauge on the real time lattice. As pointed out in [3], keeping track of this gauge
transformation over the course of the Hamiltonian time evolution can be efficiently achieved
using a sequence of small gauge transformations determined by an extended variant of the
Los Alamos gauge fixing algorithm described in more detail in Appendix B.

At first sight, it may appear as if this procedure were completely free of the aforemen-
tioned ultraviolet problems. However these problems return in determining the winding
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number of the gauge transformation. Indeed, a topologically meaningful definition of the
winding number is only possible when S(x) is sufficiently slowly varyingg; when this is the
case, the winding number can be extracted using the methodology of Woit [178]. Specifically,
for the SU(2) gauge group, the winding number is characterized by the degree of the map

NW = deg (S) (2.20)

and can be extracted in a straightforward way following [3]–the procedure is described in
further detail in Appendix B. Similarly, in the case of SU(Nc) with Nc > 2 , one can extract
the winding number by decomposition into SU(2) sub-groups [184].

By fixing the Coulomb gauge condition at the initial time, the slave field S(x) can initially
be set to the identity such that it is slowly varying at that time. However, ensuring that
the slave field S(x) remains slowly varying over the course of the Hamiltonian evolution
is a non-trivial task and generally requires a more careful tuning of the algorithm. The
strategy devised in [3] is to monitor the roughness of the gauge transformation. This quality
is quantified in terms of the peak stress defined as

PS = supx∑
j

ReTr[1 −
1

2
(U
(S)
j (x) +U

†,(S)
j (x − ĵ))] ,

(2.21)

and to apply the transformation to Coulomb gauge of the dynamical fields U , E and S

Ui(x)→ U
(S)
i (x) , Ei(x)→ E

(S)
i (x) , S(x)→ 1 ,

(2.22)

whenever the peak stress falls below a certain threshold [3]. Consequently, by restoring
the Coulomb gauge condition dynamically, one ensures that the slave field remains slowly
varying on large time scales and the extraction of the winding number is topological.

Despite the elegance of the slave field method, in practice, the underlying local gauge
fixing algorithm is very inefficient on large lattices and performing the frequent gauge fixing
required for the topology measurement becomes prohibitively expensive. We will therefore
use this method primarily as a benchmark and cross-check of the calibrated cooling technique
discussed previously.

2.2.3 Chern-Simons measurements & sphaleron transitions in ther-
mal equilibrium

Before we apply the above methods to study sphaleron transitions in the Glasma, we will
briefly discuss the application of these methods to SU(2) Yang-Mills theory in thermal
equilibrium. While the correct determination of the sphaleron rate at weak coupling requires
a simultaneous description of the hard (∼ T ) and soft (∼ g2T ) excitations of the systems – as
discussed earlier in Sec. 2.1 – our primary goal is to illustrate basic features of the evolution
of the Chern-Simons number in thermal equilibrium. We will therefore neglect the effects

gThe slave field S(x) does not necessarily have to be close to the identity for this condition to be satisfied.
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(τc = 0.75 (g2T )−2) and slave field techniques for a single configuration in thermal equilibrium
(N = 24, β = 2). Slave field results are shifted by 5 units for comparison purposes. The
difference between the two methods is small over the course of the entire simulation.

of hard excitations in the thermal case and instead follow previous work that explored the
behavior of soft (∼ g2T ) modes in 3D classical Yang-Mills theory.

We generate thermal configurations using the highly efficient thermalization algorithm
developed by Moore [185]. Beginning with a cold start (Uµ = 1 ,Eµ = 0), we perform a series
of iterations of the following steps:

1) Generate color electric fields according to a Gaussian distribution with

⟨Ei
a(x)E

j
b(y)⟩ = β

−1
latδ

ijδabδx,y

where βlat = 1/(g2Ta) is the lattice coupling in 3D Yang-Mills theoryh.

2) Project the color electric fields on the constraint surface where Gauss’s law condition
DµEµ = 0 is satisfied using the algorithm described in [150].

3) Evolve the gauge links and electric fields according to Hamilton’s equations of motion
for some time tth to allow energy to be exchanged between the electric and magnetic
fields.

until the energy density settles to its equilibrium valuei. We subsequently perform the
real time evolution by solving Hamilton’s equations of motion as described in Sec. 2.2.1
and measure the Chern-Simons number using the methods described in Sec. 2.2.2. Since
our primary aim was to illustrate the time evolution of the Chern-Simons number in the
equilibrium setup, we performed our thermal simulations on rather small N = 24 lattices
with βlat = 2 where comparisons to published results are available [3].

hOur normalization of the lattice coupling differs by a factor of 4 from the one used in earlier works [3].
iFor a choice of ttha = 50 we find that for a N = 24 lattice and βlat values as discussed below, convergence

is typically achieved in less than 20 iterations.
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Figure 2.4: Histogram of the Chern-Simons number difference ∆NCS for equilibrium con-
figurations (N = 24, β = 2) separated by δt = 5 (g2T )−1 (left panel) and respectively
δt = 20 (g2T )−1 (right panel) during the real time evolution. The different curves in each
panel correspond to the results for different levels of cooling.

We first investigate the behavior of the Chern-Simons number over the course of the real
time evolution for a single field configuration. Our results are shown in Fig. 2.3. The dif-
ferent curves correspond to the extraction of the Chern-Simons number using the calibrated
cooling (purple) and slave field (green) techniques. Since the difference between the two mea-
surements – also shown in Fig. 2.3 – is small, we have shifted the slave field measurement
by 5 units for better comparison of the results.

The long time behavior of the correlation function in Fig. 2.3 is dominated by transitions
between different topological sectors that are characterized in terms of approximately integer
changes of the Chern-Simons number over a short amount of time. While thermal field
strength fluctuations also contribute to the calibrated cooling measurement, the comparison
with the slave field measurement – designed to measure the topological contribution only –
shows that the effect of ordinary field strength fluctuations is small and does not significantly
affect the long time behavior of the Chern-Simons number. We find, consistent with the
results of [3, 151], that both methods agree within statistical white noise over the course of
the entire simulation.

We can further quantify the time evolution of the Chern-Simons number by investigating
the statistical properties of the Chern-Simons number difference

∆NCS(t, δt) = NCS(t + δt) −NCS(t) , (2.23)

during the real time evolution. In equilibrium, time translation invariance guarantees the
result to be independent of t and we have verified this explicitly. Our results for the probabil-
ity distribution P (∆NCS) are shown in Fig. 2.4 based on the data sets in Tab. 2.1. Different
panels in Fig. 2.4 show our results for two different separations in time δt = 5 (g2T )−1 (left
panel) and δt = 20 (g2T )−1 (right panel), whereas different curves in each panel correspond to
different choices of the cooling depth τc = 0.0625−62.5 (g2T )−2 employed in the measurement
of the Chern-Simons number.

While a minimal amount of cooling is necessary to ensure that the Chern-Simons current
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Figure 2.5: Auto-correlation function of the Chern-Simons number for equilibrium configu-
rations (N = 24, β = 2) with two different cooling depths (g2T )2τc = 0.0625 and 62.5. Our
results are compared to the sphaleron rate from [3].

behaves at least approximately as a total time derivativej, by cooling further one successively
removes residual field strength fluctuations from the configurations and thereby reduces their
contribution to the Chern-Simons number. After cooling down to τc = 62.5 (g2T )−2, the dif-
ference in Chern-Simons number is strongly peaked around integers as the measurement is
completely dominated by transitions between different topological sectorsk. Since more tran-
sitions occur over a larger time scale δt, the width of the distribution increases significantly,
as is clear from the results shown in the upper and lower panels of Fig. 2.4. Even though
this behavior is most prominent for the coolest configurations, it can also be clearly seen for
modest cooling times relative to the behavior of the original field configurations.

We now compute the auto-correlation function of the Chern-Simons number,

C(t, δt) =
1

V
⟨(NCS(t + δt) −NCS(t))

2
⟩ , (2.24)

which, according to Eq. (2.11), can be used to define the sphaleron transition rate in the late
time limit of the correlation function. Our results are shown in Fig. 2.5, where we present
the auto-correlation function in Eq. (2.24) as a function of the temporal separation δt. We
find that the auto-correlation function is approximately independent of the cooling depth τc
indicating once again the dominance of topological transitions for the long-time behavior of
the Chern-Simons number. One also observes from Fig. 2.5 that the NCS auto-correlation
function shows an approximately linear rise as a function of δt. This result is consistent with
the expectation that consecutive sphaleron transitions have the Markovian property of being
uncorrelated with each other on sufficiently long time scales. The long time behavior of the
Chern-Simons number can therefore be approximated by an integer random walk with the
diffusion constant given by the sphaleron transition rate,

1

V
⟨∆N2

CS(δt)⟩
eq
= Γeqsph δt . (2.25)

jThe quality of this approximation can be checked explicitly during the calibration step [3]. We refer to
Appendix A for a more detailed discussion.

kSmall differences from integer values arise not only due to residual field strength fluctuations, but also
due to (small) lattice discretization errors in the determination of the space-time integral of the Chern-Simons
current in Eq. (2.18).
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N βlat g2Ta (g2T )2 τcNconfs

24 2 1/2 0.0625 1152
24 2 1/2 4.0 196
24 2 1/2 62.5 1180

Table 2.1: Data sets for studying sphaleron transitions in 3D SU(2) Yang-Mills theory in
thermal equilibrium.

We compared our results for the sphaleron transition rate to the previous extraction by
Moore [3]. The latter is represented by the black line with grey error bands in Fig. 2.5.
Excellent agreement is obtained between the two calculations.

2.3 Sphaleron transitions in the Glasma

Now that we have demonstrated that we can reproduce established results in the literature
for computing the sphaleron transition rate in non-Abelian plasmas in thermal equilibrium,
we can apply these techniques to explore topological transitions in the Glasma. We will begin
with discussing the initial conditions for the Glasma in weak coupling. We will for simplicity
not consider the realistic case of a Glasma undergoing rapid longitudinal expansion but will
restrict ourselves to an isotropic system in a static box. In agreement with previous studies,
we will show that even if one starts with a one scale problem given by the initial hard scale,
the saturation scale Qs, a scale separation develops with time between the hard scale and the
softer electric and magnetic screening scales. Of particular interest is the temporal evolution
of the spatial string tension, which we will compute for the first time. We will then compute
the Chern-Simons number in the Glasma and study its auto-correlation behavior. Finally,
we will demonstrate that one can express the extracted sphaleron transition rate in terms of
the magnetic screening scale in the system.

2.3.1 Initial conditions & Single particle spectra

We choose our initial conditions to mimic the physical situation in a weak coupling scenario of
an ultra-relativistic heavy ion collision at very high energies [186, 70]. The defining feature of
the non-equilibrium plasma, often called the Glasma, is an initial non-perturbatively large
phase space occupancy f(t0, p) ∼ 1/αS of gluon modes up to a saturation scale Qs. As
discussed previously, these initial conditions can be implemented in a simple quasi-particle
picture where the initial gauge fields, and their momentum conjugate electric fields, are
expressed as a superposition of transversely polarized gluons,

Aaµ(t0, x) = ⨋
d3k

(2π)2

1

2k

√
f(t0, k) [c

a
kξ
λ
µ(k)e

ikx + c.c.] ,

Ea
µ(t0, x) = ⨋

d3k

(2π)2

1

2k

√
f(t0, k) [c

a
kξ̇
λ
µ(k)e

ikx + c.c.] ,

(2.26)
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Figure 2.6: Single particle spectra extracted at different times Qst = 0,50,200,800 of the
non-equilibrium evolution on a N = 128 lattice with spacing Qsa = 0.5.

where ξλµ(k) labels the transverse polarization vectors, the c’s are complex Gaussian random
numbers with zero mean and unit variance and ⨋ indicates a sum over polarizations and
an integral over wavenumbers. The above initial conditions do not automatically satisfy
the non-Abelian Gauss law DµEµ = 0; we must therefore enforce this constraint using the
methods described in [150]. Our initial gluon distribution f(t0, k) is chosen to be

f(t0, k) =
n0

2πNcαS

Qs
√
k2 +Q2

s/10
θ(Qs − k) , (2.27)

where n0 is a free parameter of order unity that can be used to vary the initial overoccupancy–
if not stated otherwise, we choose n0 = 1 as the default value.

While our choice of initial conditions may appear peculiar at first sight, previous studies
[186, 161, 162] have demonstrated that the details of the initial conditions become irrelevant
on a time scale Qst ∼ n−2

0 , which corresponds parametrically to the inverse of the large
angle scattering rate. Indeed, following the time evolution of the gluon spectruml shown in
Fig. 2.6, one observes a rapid change of the gluon distribution at early times Qst ≲ 50. As first
reported in [161, 162], the Glasma subsequently approaches a universal attractor solution
characterized by an infrared power law with a rapid fall–off at high momenta. This evolution
is shown for Qst ≤ 800 in Fig. 2.6. In this regime, the dynamics is entirely characterized in
terms of a self-similar scaling of the gluon distribution [186, 161, 162]

f(t, p) = (Qst)
αfS((Qst)

βp) . (2.28)

The scaling exponents α = −4/7 and β = −1/7 in this regime have been extracted to high
accuracy from classical-statistical simulations [186, 161, 162] and can be understood from
simple considerations in kinetic theory [160, 159]. As discussed in [187, 186] the self-similar

scaling in Eq. (2.28) persists up to a timescale QstQuantum = α
−7/4
s , when the typical occupancy

of hard modes becomes of order unity. Beyond tQuantum a classical-statistical description is
no longer accurate, as instead quantum effects become important and drive the system to
thermal equilibrium [75].

lWe extract the single particle spectrum from equal time correlation functions in Coulomb gauge as
discussed in detail in [186].
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2.3.2 Evolution of characteristic scales

In a weakly coupled plasma in thermal equilibrium, the three scales are parametrically
separated by powers of the coupling constant, with the hard scale ∼ T much larger than the
electric screening scale ∼ gT , much larger than the magnetic screening scale ∼ g2T . However
in the Glasma, initially all scales are on the order of the saturation scale Qs because of the
non-perturbatively large occupancies f ∼ 1/αS. Hence the hierarchy of scales characteristic
of a weakly coupled plasma in equilibrium has to be developed dynamically during the
thermalization process.

Even though the existence of a scale hierarchy is essential for the applicability of most
weak coupling methods, and plays a crucial role for the theoretical understanding of the
sphaleron transition rate in thermal equilibrium, we emphasize that the classical-statistical
lattice approach does not explicitly rely on a separation of scales. We will therefore use this
approach in the following to study the time evolution of the characteristic scales starting
from the non-perturbative high occupancy regime.

Hard scale Λ

We first consider the time evolution of hard scale Λ(t), describing the characteristic mo-
mentum scale of hard excitations in the plasma. Following the methodology of previous
Yang-Mills studies [162, 186, 70], we determine this scale using the gauge invariant local
operator definition

Λ2(t) =
⟨H(t)⟩

⟨εB(t)⟩
, (2.29)

where the dimension six operator H(t) corresponds to the trace of the squared covariant
derivative of the field strength tensor

H(t) =
1

3V ∫
d3x Dab

j (x)F ji
b (x) Dac

k (x)F ki
c (x) . (2.30)
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Here εB(t) denotes the magnetic energy density

εB(t) =
1

4V ∫
d3x F a

ij(x)F
a
ij(x) . (2.31)

Summation over the color a, b, c = 1,⋯,N2
c − 1 and spatial Lorentz indices i, j, k = x, y, z is

implied. This hard scale can be expressed in perturbation theory as the ratio of moments of
the single particle distribution as (see for example [186])

Λ2(t) =
2

3
∫ d

3p p3 f(t, p)

∫ d
3p p f(t, p)

(2.32)

such that for a weakly coupled plasma in thermal equilibrium one has

Λ2
eq =

80

63
π2T 2 . (2.33)

whereas initially

Λ2
init = cΛ Q2

s (2.34)

where cΛ = 236−6
√

11
525 up to higher order corrections for our choice of initial condition. Our

results for the non-equilibrium evolution of the hard scale are shown in Fig. 2.7 for three
different lattice spacing Qsa = 1,1/2,1/3. Since the operator definition in Eq. (2.29) involves
an ultraviolet sensitive dimension six operator, the result is only slowly convergent as a
function of the lattice spacing. Moreover, since the physical hard scale Λ increase as a
function of time, clear deviations from the continuum limit can be observed for coarser
lattices at late times. However, for the finer lattices we find that the time evolution of of
the hard scale converges towards a Λ2 ∼ (Qst)2/7 scaling behavior as reported previously
in [160, 186]. Indeed, this scaling is expected from the self-similar evolution of the single
particle distribution in Eq. (2.28).

36



Debye scale mD

We will now discuss the extraction of the Debye mass, which corresponds to the (static)
electric screening scale in the plasma. Since we are unaware of a non-perturbative definition
of the Debye mass in the context of classical-statistical real-time lattice simulationsm we
follow previous works [160, 186] and instead use the leading order perturbative definition of
the Debye screening mass

m2
D(t) = 4 g2Nc∫

d3p

(2π)3

f(t, p)

p
. (2.35)

The corresponding lattice expression is obtained by replacing the momentum integral ∫
d3p
(2π)3

in this expression by the lattice sum over discrete momentum modes 1
(Na)3 ∑p. In a weakly

coupled plasma in thermal equilibrium,

m2
D,eq =

g2NcT 2

3
, (2.36)

with the Debye scale is parametrically smaller than the typical hard momentum scale. In
contrast, one finds initially in our non-equilibrium simulation that

m2
D,init = cm2

D
n0Q

2
s . (2.37)

where cm2
D
=

√
2
5

√
11−1
π2 for our choice of initial condition. Comparing this expression to

Eq. (2.34). we observe that there is no parametric separation of scales at the initial time
even at arbitrarily weak coupling. Our results for the non-equilibrium temporal evolution
of the Debye scale m2

D(t) are depicted in Fig. 2.8 for different lattice discretizations. We
find that m2

D approaches an approximate (Qst)−2/7 scaling behavior in the continuum limit,
consistent with the expectation suggested by the scaling of the single particle distribution.

Spatial string tension σ

In thermal equilibrium, the sphaleron transition rate is controlled by the dynamics of modes
with momenta on the order of the inverse magnetic screening length. It is therefore desirable
to extract an equivalent quantity in our non-equilibrium setup and study its evolution in
time. As in thermal equilibrium, one can investigate the behavior of spatial Wilson loop

W(t,A) = P exp (ig∮ dxiAi(x, t)) , (2.38)

as a function of the area A enclosed by the loop. Since the large distance behavior of the
Wilson loop in thermal equilibrium is characterized by an area law,

⟨Tr W(A)⟩
eq
∝ e−σA , (2.39)

mFor a discussion of the non-perturbative definition of the Debye mass in Euclidean lattice gauge theories,
see for instance [188]. However it is not obvious how to adapt these concepts to our real time lattice
simulations.

37



10-2

10-1

100

 0  200  400  600  800

N=128, Qsa=1  
N=128, Qsa=1/2
N=192, Qsa=1/3

Qst=800

Q
s t=400

Q
s t=100

W
il

s
o

n
 L

o
o

p
: 

(1
/N

c)
<

T
r(

W
(t

,A
))

>

Loop Area: Qs
2A

Figure 2.9: Expectation value of the trace of the spatial Wilson loop versus the area of the
loop at times Qst = 100, 400, 800 (bottom to top). The different colored curves for each
time correspond to different lattice discretizations.

with the spatial string tension σ related to the magnetic screening scale parametrically as

σ ∼ g4T 2 , (2.40)

at weak coupling, we can similarly extract the spatial string tension σ in our non-equilibrium
simulations and use

√
σ as a proxy for the inverse magnetic screening length.

We first analyze the behavior of the spatial Wilson loop itself to establish the area law
scaling in Eq. (2.39) for our non-equilibrium setup.n Our results for the (real-part of the)
trace as a function of the area of the Wilson loop at three different times Qst = 100, 400, 800
of the evolution are presented in Fig. 2.9. While for small areas the Wilson loops are close
to the identity and do not exhibit scaling, convergence towards an area law scaling as in
Eq. (2.39) can be observed for sufficiently large areas. Since the observation of such area law
scaling in an out-of-equilibrium plasma is quite non-trivial, we briefly note that our results
are in line with the findings reported in [39, 189]. Although area law scaling emerges clearly
for all times shown in Fig. 2.9, extending our analysis to much earlier times is extremely
challenging. This is because the values of the Wilson loop decrease rapidly as a function of
area at very early times; accurately resolving values ≲ 10−3 requires enormous statistics, far
exceeding the number of configurations Nconfs = 4000 used in Fig. 2.9.

We can further quantify the long distance behavior of the Wilson loop in terms of the
spatial string tension σ(t), which can be extracted from the logarithmic derivative of the
Wilson loop with respect to the area

σ(t) = −
∂ ln ⟨Tr W(t,A)⟩

∂A

RRRRRRRRRRRQ2
sA≫1

. (2.41)

nOur results presented in this section are obtained for so called on-axis Wilson loops, i.e. square loops
with sides oriented along the lattice coordinate directions (1,0,0), (0,1,0), (0,0,1). We have also inves-
tigated the behavior of so called off-axis Wilson loops where, instead of orienting the sides along the
(1,0,0), (0,1,0), (0,0,1) directions, the sides of the rectangle are oriented along any mutually orthogonal
directions of lattice vectors (pointing for example in the (2,1,0) and (−1,2,0) directions). Within statistical
errors the off-axis results agree with the on-axis measurements when expressed as a function of the area of
the loop.

38



10-4

10-3

10-2

10-1

 100  1000

(Qst)-2/3

S
tr

in
g

 T
e

n
s

io
n

: 
σ(

t)
 / 

Q
s2

Time: Qs t

N=128, Qsa=1   

N=192, Qsa=1/2

N=192, Qsa=1/3

Figure 2.10: Time evolution of the spatial string tension σ(t) extracted from the logarithmic
area derivative of the Wilson loop.

10-3

10-2

10-1

100

101

102

 10  100

σ / Qs
2

mD
2 / Qs

2

Λ2 / Qs
2

S
c

a
le

s

Time: Qst

N=128, Qsa=1   
N=192, Qsa=1/2
N=192, Qsa=1/3

(Qst)
2/7 

(Qst)
-2/7

(Qst)
-2/3

Figure 2.11: Time evolution of the hard scale (Λ2), the electric screening scale (m2
D), and

the spatial string tension (σ). A clear separation of scales is established dynamically.

In practice, we compute the logarithmic derivative at different values of Q2
sA by performing

a fit involving three adjacent data points. Subsequently, we search for an area independent
value at Q2

sA ≫ 1 to extract the spatial string tension and include residual variations into
our error estimate.

Our results for the string tension σ(t) as a function of time are shown in Fig. 2.10. Here
we combined data for different lattice discretizations. While the error bars for the string
tension are significantly larger relative to the previous measurements, one clearly observes a
rapid decrease of the string tension as a function of time. We find that the time dependence
can be approximately described by a (Qst)−2/3 scaling behavior. We caution however that
the precision with which we extract the exponent is limited to the 10 % level – primarily
by the large statistical uncertainties in the measurement of the Wilson loop. We also note
that in contrast to the time evolution of the hard and electric screening scales which can be
estimated from kinetic theory [159, 160], we are not aware of an analytic prediction of the
time evolution of the non-perturbative magnetic screening scale.
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N n0 Qsa Q2
s τc Nconfs

64 0.5 1.0 12 256
64 1.0 1.0 12 256
64 1.0 1.0 324 1024
64 1.5 1.0 12 256
96 1.0 1.0 1 128
96 1.0 1.0 12 4096
96 1.0 1.0 36 1024
96 1.0 1.0 108 1024
96 1.0 1.0 216 1024

N n0 Qsa Q2
s τc Nconfs

96 1.0 1.0 250 2048
96 1.0 1.0 324 2048
128 1.0 0.5 1 128
128 1.0 0.5 12 512
128 1.0 1.0 1 128
128 1.0 1.0 12 2432
192 1.0 0.5 12 512
192 1.0 1.0 1 128
192 1.0 1.0 12 512

Table 2.2: Data sets employed in the study of sphaleron transitions out-of-equilibrium.

Dynamical separation of scales

Our results for the time evolution of the different characteristic scales of the Glasma are
compactly summarized in Fig. 2.11, where we plot the hard scale Λ2(t), the electric screening
scale m2

D(t) and the spatial string tension σ(t) (as a proxy for the magnetic screening scale)
as a function of time. Initially all scales are of similar magnitude up to order one factors
depending the details of the initial conditions. Subsequently a clear separation of scales
emerges dynamically as a function of time. While the hard scale increases according to a
power law in time, the electric and magnetic screening scales decrease and separate from
each other as well due to the faster decrease of the string tension relative to the Debye mass.
Since such a separation of scales is essential to the applicability of standard (perturbative)
weak coupling methods (such as effective kinetic descriptions or hard-loop effective field
theories), our non-perturbative lattice results provide clear evidence that these methods
become applicable at sufficiently late times.

2.3.3 Sphaleron transitions & evolution of Chern-Simons number

With the estimates obtained of the time evolution of the characteristic hard and soft scales
in the Glasma, we will now proceed to study sphaleron transitions and the evolution of
Chern-Simons number. We first note that a crucial difference from the thermal case is
that we can simultaneously resolve the dynamics of hard as well as soft excitations using a
classical-statistical lattice description. In the thermal case, the typical occupancies of hard
modes (p ∼ T ) are of order unity f(p ∼ T ) ∼ 1 and a classical description does not apply to
the hard modes. In contrast, in the Glasma, the hard modes (p ∼ Λ(t)) are high occupied,
f(p ∼ Λ(t)) ≫ 1, and therefore admit a classical description. Due to the noted complication,
the study of sphaleron transitions in a weakly coupled plasma in thermal equilibrium proceeds
via an effective field theory for soft (p ∼ g2T ) modes as discussed in Sec. 2.1. Since there is
no such complication in the non-equilibrium case, we can directly study sphaleron dynamics
in the Glasma using first principles lattice techniques.

This benefit is not without cost because for the Glasma all relevant scales have to be
resolved simultaneously on the lattice. In addition, since the relevant scales are separating
rapidly from each other with time, one typically requires very large lattices and the char-
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acteristic scales are accessible only for a limited amount of time. A summary of the lattice
parameters and data sets used in our study is provided in Tab. 2.2. If not stated otherwise,
all results shown were obtained for N = 96 lattices with spacing Qsa = 1.

Sphaleron transitions & Chern-Simons number

Since there are important conceptual differences of sphaleron dynamics in the Glasma relative
to the thermal equilibrium case, we will begin by illustrating the time evolution of the Chern-
Simons number and demonstrate our ability to successfully identify topological transitions.
In Fig. 2.12, we show the time evolution of the Chern-Simons number for a short period
of time during the non-equilibrium evolution of a single gauge field configuration. Different
curves in Fig. 2.12 correspond to different extraction methods and can be characterized as
follows.

In the first case we perform gradient flow cooling of the non-equilibrium field configuration
all the way to the vacuum and measure the integral of the Chern-Simons current along the
cooling trajectory, as in Eq. (2.18). In this way we obtain the green curve in Fig. 2.12,
which exhibits clear discontinuities. The positions of these discontinuities are indicated by
the vertical gray lines. Each discontinuity corresponds to a transitions between different
topological sectors defined by the so-called “gradient flow separatrix” [151], which occurs
when the gauge field configuration evolves from the basin of attraction of one vacuum state
to the basin of attraction of another topologically inequivalent vacuum state.

By adding the Chern-Simons number N vac
CS (t) of the corresponding vacuum state, as in

Eq. (2.18), we obtain the blue curve in Fig. 2.12 corresponding to the gradient flow definition
N gf
CS of the Chern-Simons number. One observes that N gf

CS is a continuous function of time.
In addition to the topological information, it also contains contributions from finite energy
fluctuations of the chromo-electric and chromo-magnetic fields.

We have also compared our results from the gradient flow definition of the Chern-Simons
number with the ones obtained from the calibrated cooling technique. When choosing a small
cooling depth Q2

sτc = 0.25, we obtain the orange curve in Fig. 2.12, which closely follows the
gradient flow definition. By choosing a larger value of Q2

sτc = 250 for the cooling depth,
we can practically remove all field strength fluctuations above the vacuum and restrict the
measurement of the Chern-Simons number to its topological content. Indeed one observes
from the purple curve in Fig. 2.12, that for Q2

sτc = 250 the evolution is characterized by
discontinuous transitions between different topological sectors, which nicely coincide with
the crossings of the gradient flow separatrix.

Even though we can separate the topological content of the Chern-Simons number from
the contribution of field-strength fluctuations at different length scales by varying the cooling
depth, it is not a priori obvious which contributions to the Chern-Simons number are most
relevant to the physics of the chiral magnetic effect. We will therefore vary the amount of
cooling in the following and present results for different values of the cooling depth.

Statistical analysis of Chern-Simons number

Now that we have established that we are able to identify topological transitions out-of-
equilibrium, we will proceed with a more detailed statistical analysis. In order to obtain a
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first estimate of the time dependence of the transition rate, we follow the methodology in
Sec. 2.2.3 and first investigate the probability distribution of the difference ∆NCS between
the measurements of the Chern-Simons number at reference time t and subsequent time
t + δt. (See the definition in Eq. (2.23).) Our results for three different reference times
Qst = 10, 50, 100 during the non-equilibrium evolution and a common separation ofQsδt = 10
are shown in Fig. 2.13. Irrespective of the amount of cooling, which primarily affects how
narrowly the distributions are peaked around integer values, a clear difference between the
different panels emerges. At early times of the non-equilibrium evolution, transitions between
different topological sectors occur frequently resulting in a broad probability distribution for
Qst = 10. At the later times Qst = 50, 100, the rate of transitions decreases rapidly as a
function of time leading to much narrower distributions. Most prominently, starting at Qst =
100 one finds that after a time Qsδt = 10 approximately half of the field configurations can
still be found in the same topological sector. Most of the other half has merely transitioned to
the neighboring topological sector. Very few configurations have ∣∆NCS ∣ > 1 when sufficient
cooling (Q2

sτc = 250) is applied to isolate the topology at these late times.o

While a rapid decrease of the sphaleron transition rate may be expected based on our
previous observation that the magnetic screening scale decreases significantly as a function
of time during the non-equilibrium evolution, we would like to further quantify this effect
and determine the physical scales associated with the rate. We follow the same methodology
devised in the equilibrium case and study the auto-correlation functions of the Chern-Simons
number. Our results for the auto-correlation function of the Chern-Simons number C(t, δt)
are summarized in Figs. 2.14 and 2.15.

Fig. 2.14 shows results for the auto-correlation function for a fixed reference time Qst =
50 during the non-equilibrium evolution. Starting with a rapid rise for small separations

oWe emphasize that the detailed fractions depend on the physical volume determined by the lattice size
V = (Na)3. Most importantly, we will demonstrate shortly that the variance ⟨∆N2

CS⟩ of the distributions
exhibits the expected volume scaling.
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depth is Q2

sτc = 12 in all cases.

Qsδt ≲ 10, the growth of ⟨∆N2
CS⟩ slows down dramatically at larger δt and is superseded by

pronounced oscillations. In fact the oscillations are so significant that for certain periods such
as e.g. Qsδt ≃ 10−20 the variance ⟨∆N2

CS⟩ decreases with increasing separation δt. We have
verified that this oscillatory behavior persists even for deeper cooling, as can be observed
from the lower panel of Fig. 2.14 where we show results for Q2

sτc = 324. Most importantly,
this behavior is robust under variations of the lattice volume as can be observed from the
different curves in Fig. 2.14 which agree with each other within errors – indicating that our
results are not significantly affected by finite volume effects.

We emphasize that the non-monotonic behavior observed in our non-equilibrium sim-
ulations is clearly different from the thermal case, shown in Fig. 2.5, where in contrast
⟨∆N2

CS⟩ increases monotonously as a function of the separation time. Moreover the non-
monotonic behavior observed in Fig. 2.14 is inconsistent with the usual interpretation of the
Chern-Simons number evolution as a Markovian process. This is the case even when a time-
dependent transition rate is assumed. It instead points to the fact that essential features of
the dynamics on these time scales are non-Markovian as the evolution of the Chern-Simons
number exhibits pronounced memory effects.

While the non-monotonic behavior of the Chern-Simons number auto-correlation may
come as a surprise, we find that it is a robust feature of the non-equilibrium evolution also at
later times. This is seen in Fig. 2.15, where we plot the Chern-Simons auto-correlation func-
tion starting from three different reference times Qst = 25,50,100 during the non-equilibrium
evolution. Even though a clear time dependence is seen in Fig. 2.15, the general oscillation
pattern remains intact albeit a slight change in the oscillation frequency can be observed.

The most prominent feature of Fig. 2.15 though is the change in magnitude between
different times Qst = 25, 50, 100. Clearly, the overall magnitude of ⟨∆N2

CS⟩ is significantly
larger at earlier times and confirms our previous observation of a larger rate of topological
transitions early on in the evolution of the Glasma. We will further quantify this statement
below by extracting the rate of topological transitions associated with the initial rise of the
auto-correlation function.
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Figure 2.16: Non-equilibrium sphaleron transition rate Γneqsph(t) as a function of time Qst for
various different values of the cooling depth Q2

sτc.

2.3.4 Quantifying the rate of topological transitions

We established clearly that Chern-Simons number evolution in the Glasma is non-Markovian.
The equilibrium definition of the sphaleron transition rate in Eq. (2.11) as the slope of the
NCS auto-correlation function in the late time limit is therefore not sufficient to quantify
topological transitions in the Glasma. However, for short enough separations in time Qsδt ≲
10, the auto-correlation function does exhibit a rapid and approximately linear rise. We will
exploit this behavior to quantify the time dependence of the transition rate as

Γneqsph(t) = ⟨
(NCS(t + δt) −NCS(t))2

V δt
⟩
Qsδt<10

. (2.42)

This definition of the rate does not by any means single out topological contributions; it
potentially receives large contributions from fluctuations of the color-electric and color-
magnetic strength on all scales. We will therefore further apply different levels of cooling
τc to efficiently suppress field-strength fluctuations on short distance scales. In particular,
by choosing Q2

sτc ≫ 1 to cool almost all the way to the vacuum we can effectively suppress
non-topological fluctuations and obtain a rate more closely related to the extraction of the
sphaleron transition rate in thermal equilibriump.

Our results for the non-equilibrium sphaleron transition rate Γneqsph(t) as a function of time
are presented in Fig. 2.16 for various levels of cooling. For small values of Q2

sτc ∼ O(1), a
significant dependence on the cooling depth is observed. This indicates large contributions to
the rate from fluctuations of the color-electric and color-magnetic strength at short distance
scales. In contrast, the results for large values of Q2

sτc ≫ 1 appear to converge towards a
single curve isolating the genuine contributions due to topological transitions.

Irrespective of the cooling depth, a clear time dependence of the rate can be observed.
Starting from the largest values at early times, the rate rapidly decreases as a function of

pSimilarly, we could also apply cooling to the vacuum and simply count the number of transitions defined
by crossings of the gradient flow separatrix per unit time. However as some of the separatrix crossings do
not affect the evolution on longer time scales, this measurement would differ by a “dynamical prefactor”
[151] which potentially also depends on time.
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Figure 2.17: Non-equilibrium sphaleron transition rate Γneqsph(t) as a function of time Qst
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time and eventually approaches a power law behavior (Qst)−ζ with an approximate scaling
exponent ζ ≃ 4/3. Albeit the early time behavior depends on the details of the initial
conditions, we find that variations of the initial conditions do not affect the scaling behavior
at later times. This is shown in Fig. 2.17 where the non-equilibrium sphaleron transition rate
is plotted for different initial over-occupancies n0; all the curves approach a common scaling
behavior around Qst ∼ 100. On the other hand, it is also clear that the sphaleron transition
rate is by far the largest at early times and one should therefore expect a significant sensitivity
to early time dynamics in time integrated quantities such as the axial charge density.

The time dependence of the sphaleron transition rate in the scaling regime can be com-
pared to those of the characteristic scales of the Glasma. As we noted previously, the
sphaleron transition rate in equilibrium is most sensitive to modes on the order of the mag-
netic screening scale. One can analogously express the corresponding rate in the Glasma
in units of the spatial string tension previously extracted in Sec. 2.3.2. Our results for the
dimensionless ratio Γneqsph(t)/σ

2(t) are presented in Fig. 2.18 as a function of time. While
both the square of the spatial string tension as well as the non-equilibrium sphaleron rate
change by an order of magnitude over the time scale shown in Fig. 2.18, the ratio of the two
quantities remains approximately constant with Γneqsph/σ

2 = (2.2 ± 0.4) ⋅ 10−3 extracted from
the result shown in Fig. 2.18. We interpret this result as clear evidence that the dynamics of
sphaleron transitions off-equilibrium is fully determined by modes on the order of the inverse
magnetic screening length in the Glasma.

2.4 Dynamical scales redux

In this section, we briefly detail a follow-up study to the dynamical scales in Sec. 2.3.2.
Strongly interacting gauge field theories, such as quantum chromodynamics (QCD), have

elementary non-perturbative excitations described by Wilson loops [190, 30]. Such extended
objects play an important role also in string theories [191] or suitable generalizations in
formulations of quantum gravity [192]. In thermal equilibrium the Wilson loop of QCD pro-
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Figure 2.18: Non-equilibrium sphaleron transition rate normalized by square of the spatial
string tension.

vides an important means to distinguish the confined “hadronic” phase from the deconfined
“quark-gluon plasma” state [193]. Despite the well-established relevance of the Wilson loop
for our understanding of fundamental problems in vacuum or thermal equilibrium, much less
is known about its significance for dynamical situations out of equilibrium.

The main new result is the scaling property of the spatial Wilson loop that characterizes a
universal state of QCD matter far from equilibrium. This state provides an important build-
ing block for our understanding of the early stages of ultra-relativistic heavy-ion collisions
in the limit of sufficiently high energies. In such collisions a nonequilibrium plasma of highly
occupied gluons is expected to form [66, 9], with transient scaling properties [70, 186, 76]
characterizing the thermalization process of the non-Abelian plasma at weak gauge coupling.
However, the notion of occupancies of individual gluons is not gauge invariant and becomes
problematic beyond the perturbative high-momentum regime. Since the Wilson loop is gauge
invariant, it allows the investigation of non-perturbative “infrared” properties of the strongly
correlated nonequilibrium system in an unambiguous way [39, 189, 194].

Based on numerical simulations of the plasma’s real-time dynamics in the highly excited
regime, we establish a self-similar behavior for the time evolution of the spatial Wilson loop.
The self-similarity can be fully characterized in terms of a universal scaling exponent and
scaling function that are time independent. Such universality far from equilibrium is based
on the existence of nonthermal fixed points [195], which represent nonequilibrium attractor
solutions reached on a time scale much shorter than the asymptotic thermalization time.
Since the scaling properties associated with the nonthermal fixed point are insensitive to de-
tails of the underlying model and initial conditions, our results provide an important missing
piece for the determination of the nonthermal universality classes of non-Abelian gauge the-
ories. We focus here on relativistic non-Abelian plasmas, however, there are important links
to similar phenomena in a wide range of applications from cosmology to cold atoms [71].

While the relevant non-perturbative long-distance or infrared behavior of non-Abelian
plasmas can be extracted from Wilson loops, the perturbative scaling properties at higher
momenta are well described in terms of quasi-particle excitations and can be inferred from
gauge-fixed correlations functions [39, 196, 161, 162, 194]. Combining both, we establish
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the full nonthermal scaling properties of (statistically) homogenous and isotropic Yang-Mills
plasmas from short to large distance scales. To this end, we also extend previous calculations
for the SU(2) gauge group to the case of an SU(3) gauge symmetry underlying QCD. Our
results reveal a rather large universality class that is even insensitive to the symmetry group
of SU(2) versus SU(3).

2.4.1 Nonequilibrium Wilson loop

Wilson loop operators W transport a (color-) electrically charged particle all the way around
a closed loop in space-time. Specifically, for a particle charge in the fundamental represen-
tation of the non-Abelian SU(Nc) gauge group with Nc colors, the color-averaged transport
along a closed line C is represented by the trace of a path-ordered (P) exponential of the
gauge field operator Aµ(x) [30],

W =
1

Nc

TrPeig ∮C dx
µAµ(x) , (2.43)

where g denotes the gauge coupling, and xµ are the space-time coordinates with µ = 0–4.
In vacuum or thermal equilibrium the closed curve C is either taken to include the time

direction, in which case the time variable is analytically continued to imaginary values, or
runs along spatial directions only. The latter is called a spatial Wilson loop. In general, out of
equilibrium the time variable may not be continued to imaginary values and we will consider
spatial Wilson loops only. The theory is then regularized on a lattice, where the Wilson loop
involves products of lattice link variables describing the gauge degrees of freedom [30].

In equilibrium at zero temperature the expectation value of the Wilson loop ⟨W ⟩eq in the
pure gauge theory (without dynamical quarks) decreases exponentially with the area A as

− log⟨W ⟩eq = σeqA (2.44)

for sufficiently large A. Specifically, for the temporal-spatial Wilson loop with imaginary
times such an area-law behavior characterizes confinement, and the associated equilibrium
string tension σeq describes the linear rise of the static quark–anti-quark potential for large
spatial separations. At zero temperature, spatial Wilson loops show the same area-law behav-
ior as their temporal-spatial counterparts. However, for spatial Wilson loops this behavior
persists even in the deconfined high-temperature phase, where it reflects non-perturbative
gauge-field correlations [197].

Since thermal equilibrium is time-translation invariant, the expectation value ⟨W ⟩eq is a
constant in time. In contrast, for the highly excited nonequilibrium plasma the expectation
value ⟨W ⟩(t,A) explicitly depends on time t ≡ x0 [39, 189, 194]. A self-similar behavior of
the nonequilibrium spatial Wilson loop is described in terms of a universal scaling exponent
ζ and scaling function w as

− log⟨W ⟩(t,A) = w ((t/t0)
−ζAQ2) , (2.45)

where t and A are measured in units of a suitable reference time scale t0 and momentum
scale Q, respectively. Instead of separately depending on time and spatial area of the loop,
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Figure 2.19: The logarithm of the spatial Wilson loop as a function of the area at different
times for gauge groups SU(Nc) with Nc = 2 (circles) and Nc = 3 (triangles). Rescaling with
the Casimir color factor −1/CF (Nc) (see main text) leads to very similar results both for
two and three colors.

in a self-similar regime the dynamics only depends on the product of the area and some
(fractional) power of time. Such a non-trivial behavior requires a significant loss of infor-
mation about the microscopic parameters of the underlying system, from which universality
originates.

2.4.2 Self-similarity and area law scaling at large distances

Motivated by the Color Glass Condensate picture of nucleus-nucleus collisions, we consider
as an initial condition a nonequilibrium state with energy density ε ∼ Q4/g2 describing an
over-occupied gluonic state with characteristic momentum Q [66, 9]q. Details of the initial
conditions are found to become irrelevant on a short time scale tQ ∼ O(1), as demonstrated
previously in SU(2) simulations of perturbative quantities in Refs. [161, 162, 194]. While
Q is taken to be sufficiently large such that the “running” gauge coupling g(Q) is weak due
to the phenomenon of asymptotic freedom, the system is strongly correlated because of the
non-perturbatively large energy density.

In this case the nonequilibrium quantum dynamics can be accurately mapped onto a
classical-statistical problem, involving sampled solutions of classical Yang-Mills equations
for inhomogeneous gauge fields. The latter can be rigorously solved using real-time lattice
simulation techniques following Refs. [39, 196, 161, 162, 194] for the case of a non-expanding
plasma r. The description reproduces the underlying quantum dynamics at sufficiently early
times and breaks down at tQ ∼ g−7/2 [161, 162], when the occupation numbers of typical
perturbative momentum modes become of order one such that genuine quantum corrections
start playing an important role. Since the value of the gauge coupling drops out of the

qIn the previous sections, this was identified with the saturation scale, Qs. The scaling results do not
explicitly depend on the interpretation of the scale Q, only that that the problem is characterized by a single
dimension-ful scale

rAll data shown are obtained on 1283 lattices with spatial lattice spacing Qa = 0.5 and time step tQ = 0.01.
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Figure 2.20: The same as in Fig. 2.19, however, now as a function of the time-rescaled
area ∼ tζA with scaling exponent ζ = 3/5. The collapse of the data onto a single curve
demonstrates a remarkable level of self-similarity across times, areas, and gauge group.

classical-statistical dynamics, the precise value of g merely sets the time scale for the range
of validity of our results [186].

By virtue of the short-distance expansion for small A,

W (t,A) ≃ 1 −
g2

6Nc

A2εB(t) , (2.46)

where εB(t) denotes the (time-dependent) color-magnetic energy density s, the Wilson loop
is expected to approach unity for small enough areas. However, in the case of a possible
area-law behavior for large areas A ≫ 1/Q2 and sufficiently late times t ≫ 1/Q the Wilson
loop becomes significantly smaller than unity and decreases monotonically as a function of
A such that − log⟨W ⟩(t,A) ∼ A.

In Fig. 2.19 we present results for the nonequilibrium Wilson loop at different times as a
function of the spatial area. Shown is − log⟨W ⟩(t,A) which approaches zero for A = 0 and is
seen to rise monotonically with the area for A ≫ 1/Q2. We display results for both SU(2)
and SU(3) gauge groups. After taking into account the Casimir color factors, normalizing
the data points with CF = (N2

c − 1)/2Nc discloses a very similar behavior for Nc = 2 and
Nc = 3.

Fig. 2.20 shows the same data as Fig. 2.19, but now as a function of the rescaled spatial
area ∼ t−ζA with a time scaling exponent whose numerical fit value suggests ζ = 3/5. Most
remarkably, the various sets of data points at different times for A ≫ 1/Q2 are found to
collapse onto a single curve to very good accuracy. This provides a striking demonstration
of the self-similar scaling behavior (2.45).

Based on the self-similarity observed, we can obtain a precise estimate of the scaling
exponent ζ in (2.45) using a statistical χ2-analysis as described in Ref. [186]. Performing the

sIn terms of the spatial components i, j = 1,2,3 of the field-strength tensor F aij[A] with color index

a = 1, ..,N2
c − 1 the magnetic energy density is εB = 1

4
F aijF

ij
a [30], where summation over repeated indices is

implied.
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analysis separately for Nc = 2 and Nc = 3, we obtain

SU(2) ∶ ζ = 0.603 ± 0.005 (χ2) ± 0.004 (sys.) ,

SU(3) ∶ ζ = 0.604 ± 0.004 (χ2) ± 0.005 (sys.) , (2.47)

where the χ2-error estimate in the first parentheses is associated to the quality of the scaling
for a fixed range of areas and times, and the systematic uncertainties given in the second
parentheses are estimated by varying the window in A and t in the analysis. Despite the
different structure of the SU(2) and SU(3) gauge group, the respective infrared scaling
exponents are found to agree well with each other within errors.

The behavior of the spatial Wilson loop for large areas reflects the long-distance or
“infrared” properties of the strongly correlated system. Similar to the large-distance behavior
of the spatial Wilson loop in a high-temperature equilibrium plasma [197], our data clearly
indicates the approach to an area law, which is illustrated by the straight line in Fig. 2.20.
However, since the area-law behavior occurs in the self-similar regime of the nonequilibrium
evolution, we find that in this case a generalized scaling behavior

− log⟨W ⟩(t,A) ∼ t−ζA (2.48)

holds for a sufficiently large ratio of spatial area and fractional power of time. Since the
scaling exponent ζ is positive, data points describing larger areas and later times map onto
corresponding sets of data points for smaller areas and times. Stated differently, to observe
an area law one has to probe larger and larger areas the later the time becomes. In this
regime, we may also use (2.48) to define a time-dependent spatial string tension [39, 189, 194]

σ(t) = −
∂ log⟨W ⟩(t,A)

∂A
∼ t−ζ (2.49)

that is consistent with a previous result [194] obtained in the context of sphaleron transitions
out of equilibrium.

The area law of the nonequilibrium Wilson loop is only observed at sufficiently large
ratio ∼ t−ζA, and Fig. 2.20 shows significant deviations to the corresponding straight line for
smaller ratios. Since the area law is related to a non-perturbative infrared scale given by the
spatial string tension σ, one may expect a different scaling behavior at shorter length scales
where no string tension can be infered. However, Fig. 2.20 indicates that the self-similar
scaling even holds somewhat beyond the area-law regime. We find that the same exponent ζ
that characterizes the asymptotic scaling of the string tension describes the data well down
to (t/t0)−ζAQ2/Nc ≳ 10.

2.4.3 Self-similar scaling in the perturbative regime

We emphasize that for AQ2 ≲ O(1) there are clear deviations from the self-similar infrared
scaling (2.45) observed, which is also expected from the expansion (2.46) of the Wilson loop
for small areas. While the Wilson loop allows one to extract the relevant long-distance
properties in a gauge-invariant way, it is less suitable to visualize the detailed short-distance
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Figure 2.21: Left: The third moment of the single particle distribution ∼ p3f(p, t), which is
sensitive to perturbative momenta, at different times (t/t0)N2

c for Nc = 2 and Nc = 3. Right:
The rescaled data for β = −1/7 collapses onto a single curve demonstrating self-similarity in
the perturbative regime.

or ultraviolet properties. Besides gauge invariant observables, based e.g. on the energy-
momentum tensor, also gauge-fixed quantities provide a valid description for the perturbative
higher momenta at weak gauge coupling g. Since the gluon distribution function f(t, p) as
a function of spatial momentum p and time t has a direct correspondence in kinetic theory,
it is typically employed to characterize perturbative scaling properties. The distribution
can be extracted from equal-time correlation functions of the gauge fields ⟨A∗ν(t, p)Aµ(t, p)⟩
projected on the transverse polarizations in Coulomb gauge [186].

Self-similarity of the distribution function at higher momenta amounts to

f(t, p) = (t/t0)
4β fS ((t/t0)

βp/Q) , (2.50)

where the time-dependent normalization ∼ t4β multiplying the time-independent scaling func-
tion fS arises because of energy conservation, implying that the energy density ε ∼ ∫ d

3ppf(t, p) = const.
The universal scaling exponent β together with the fixed point distribution function fS char-
acterize the perturbative scaling regime.

The left panel of Fig. 2.21 shows data for the third moment ∼ p3f(t, p) of the distribution
as a function of momentum p at different times t/t0 ≫ 1. The figure presents results for
Nc = 2 and Nc = 3. One observes that the different data sets lie remarkably well on top of
each other for given normalized times N2

c t/t0. Moreover, if we rescale momenta according to
(2.50) with β = −1/7 all data sets at different times collapse onto a single time-independent
curve as demonstrated in the right panel of Fig. 2.21. For Nc = 2 the perturbative scaling
behavior has been observed previously [161, 162] and the value β = −1/7 is taken from an
effective kinetic theory analysis in the perturbative regime [73]. Performing the numerical
analysis separately for Nc = 2 and Nc = 3, we obtain

SU(2) ∶ β = −0.145 ± 0.017 (χ2) ± 0.002 (sys.) ,

SU(3) ∶ β = −0.141 ± 0.020 (χ2) ± 0.002 (sys.) . (2.51)

The fixed point distribution fS has a universal shape, and the results indicate a rather large
universality class that is also insensitive to the symmetry group of SU(2) versus SU(3).
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same scaling Λ2(t) ∼ t2β and m2

D(t) ∼ t−2β for β = −1/7.

In the perturbative regime one expects a hierarchy of scales, which appear at different
orders of the weak coupling g. In an equilibrium plasma at temperature T , the “hard” mo-
menta are of order T , while the color electric and magnetic screening scales are of order gT
and g2T , respectively. In the nonequilibrium plasma, we characterize the typical momenta
Λ(t) of hard excitations in terms of a local gauge invariant operator definition constructed
from a ratio of covariant derivatives of the field strength tensor and the field strength it-
self [186, 162]. Expressed perturbatively, the hard scale is defined as the ratio of moments
of the single particle distribution [161, 162]

Λ2(t) ≃
2

3
∫ d

3pp3f(t, p)

∫ d
3ppf(t, p)

∼ t−2β , (2.52)

which explicitly shows the scaling of this quantity with the exponent β. Here the last equality
is obtained from inserting (2.50) into the momentum integral of (2.52). Numerical results
are presented in the upper panel of Fig. 2.22, which clearly exhibits the same value of the
scaling exponent β both for two and three colors.

At softer momenta, the Debye scale mD is related to the electric screening scale in plasma.
The leading perturbative contribution may be expressed in terms of the distribution function
as [161, 162]

m2
D(t) = 4g2Nc∫

d3p

(2π)3

f(t, p)

p
∼ t2β . (2.53)

Its scaling behavior is demonstrated in the lower panel of Fig. 2.22.
Finally, the soft magnetic screening scale in the plasma may be related to the spatial

string tension or ∼
√
σ. Following a naive power counting, one may be tempted to argue

from (2.52) and (2.53) that
√
σ should behave ∼ t3β. However, this scale concerns the deep

infrared where typical occupancies are of order f ∼ 1/g2 in our case, such that a perturbative
description is not valid in this regime. Instead, we find according to (2.49) that

√
σ ∼ t−ζ/2.

With the values (2.47) and (2.51) we note that −3β is more than 40% larger than ζ/2, which
is well beyond our statistical uncertainties.
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Nonthermal fixed points provide an important means to classify and describe the dynam-
ical evolution of strongly correlated systems out of equilibrium. While perturbative scaling
properties at high momenta can be understood in terms of self-similar scaling of the single-
particle distribution, the notion of quasi-particles with a well-defined momentum becomes
inappropriate at soft momenta. Instead, the non-perturbative long-distance behavior is well
captured by the elementary excitations of extended objects described by gauge-invariant Wil-
son loops. Combining both descriptions allows us to establish the full nonthermal scaling
properties of the plasma from short to large distance scales. Performing an unprecedented
numerical effort in this respect, we are able to characterize the self-similar scaling proper-
ties by two independent universal exponents, ζ in the non-perturbative infrared and β in
the perturbative ultraviolet regime, and associated scaling functions. We find a remark-
able universality between SU(2) and SU(3) Yang-Mills plasmas, which exhibit the same
characteristic scaling behavior far from equilibrium even in the deep infrared. In view of
the significant differences in their thermal equilibrium critical properties, where the SU(2)
symmetric theory exhibits long-distance scaling in the Ising universality class and the SU(3)
theory is discontinuous at the thermal phase transition, our results point to a rather large
universality class for the nonequilibrium scaling phenomenon. Since universal properties are
independent of the details of the underlying microscopic system, and the nonthermal behav-
ior is to some extent even insensitive to the symmetry group, this opens the possibility of
unexpected links between seemingly disparate physical systems far from equilibrium.

2.5 Conclusion & Outlook

We presented a first study of the dynamics of sphaleron transitions in the Glasma – the ove-
roccupied and off-equilibrium non-Abelian plasma formed at early times in ultra-relativistic
heavy ion collisions. For simplicity, we considered the Glasma dynamics for SU(2) gauge
fields in a fixed box at the very weak couplings where classical-statistical dynamics captures
its early time properties.

The Glasma at the earliest time in our simulation is characterized by a single hard scale
Qs, defined as the momentum up to which all modes in the Glasma have maximal occupancy
of order 1/αS; the occupancy falls sharply beyond Qs. We showed that novel soft electric
and magnetic scales develop in the Glasma and separate from each other and the hard scale
dynamically with characteristic power laws in time that are independent of details of the
initial conditions. Such a separation of scales is essential for the thermalization process since,
in weak coupling, a clean hierarchy of these scales describes the equilibrium dynamics of a
non-Abelian plasma.

In particular, we examined the temporal behavior of the spatial Wilson loop and demon-
strated that it obeys an area law, with the scale set by a spatial string tension. We studied
its temporal behavior in detail and extracted, for the first time, the power law that gov-
erns its decay with time. In analogy to the thermal case, the spatial string tension can be
understood to determine the length scale for magnetic screening in the plasma.

We next explored the dynamics of Chern-Simons charge in the Glasma. By employing
two different cooling techniques we demonstrated the existence of integer valued topolog-
ical transitions and studied their temporal evolution. In analogy to the thermal case, we
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Figure 2.23: Sketch of the temporal evolution of the sphaleron transition rate in the non-
expanding Glasma. Shaded band represents the uncertainty in our extraction of the scaling
exponent. See text for details.

computed the auto-correlation of the Chern-Simons charge; in contrast to the former, the
auto-correlation function in the Glasma is non-Markovian and even demonstrates oscillatory
behavior with increasing auto-correlation time.

We argued that one can still identify a meaningful sphaleron transition rate for short auto-
correlation times and studied the behavior of this rate with the evolution of the Glasma. Our
first observation was that, with increasing cooling time, the Glasma sphaleron rate converges
to a limiting value. This indicates that one is measuring the rate of genuine topological
transitions at the maximal cooling times studied. Secondly, we found that while the sphaleron
transition rate is sensitive to the initial occupancy at early times, it is insensitive to it at
late times where it approaches a characteristic scaling behavior. Most strikingly, we find
that the sphaleron transition rate, to a good approximation, scales with time as the string
tension squared, or as the fourth power of the inverse magnetic screening length.

While in a weakly coupled plasma in thermal equilibrium the magnetic screening length
lmag is parametrically ∼ 1/αST , it is much smaller in the Glasma where initially lmag is on the
order of the inverse hard scale 1/Qs. As a consequence, the sphaleron transition rate in the
Glasma is greatly enhanced compared to the equilibrium value of Γeq ∼ α5

ST
4; in particular

there is no parametric suppression of the sphaleron rate in the Glasma as Γneq ∼ Q4
s.

As the Glasma evolves and begins to develop a separation of scales, the sphaleron tran-
sition rate decreases, as illustrated in Fig. 2.23. Within our classical-statistical framework
we can follow this evolution up to a time scale tQuantum ∼ α

−7/4
S Q−1

s where the occupancy
of hard modes in the plasma becomes of order unity and the classical description breaks
down [186]. Employing our extraction of the time evolution of the string tension, we can

estimate that by the time tQuantum the sphaleron rate has dropped to Γneq ∼ α
10/3
S T 4. In ar-

riving at this estimate, we have equated the energy density of the Glasma to an equilibrium
plasma with the same energy density, which gives us T 4 ∼ Q4

s/αS. Thus at tQuantum, Γneq is

still parametrically α
−5/3
S larger than the equilibrium value.

There is non-trivial quantum dynamics at the end of the classical regime which prevents
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our following the evolution of the sphaleron transition rate all the way to equilibrium. While
there has been a lot of progress in understanding the equilibration of hard modes based on
kinetic theory [75], it will be important to study the equilibration process of the sphaleron
rate in this quantum regime.

From the perspective of computing the chiral magnetic effect, it is however the early time
dynamics that matters the most. This is because the sphaleron transition rate is much larger
at early times than the rate in thermal equilibrium. While this is encouraging, more work
is required to understand the extrapolation of the weak coupling rates to realistic couplings
as well as the sensitivity of the sphaleron transition rate to details of the initial conditions.
This includes extending our simulations to SU(3) and to the longitudinally expanding Glasma
realized in heavy ion collisions. A further essential improvement to the framework introduced
here will include the addition of dynamical fermions to the Glasma dynamics – this will allow
us to study the anomaly in real time. Finally, adding an external U(1) electro-magnetic field
to the fermion computation will allow us to investigate the Chiral Magnetic Effect in heavy
ion collisions from first principles. Calculations including the last two additions discussed
here are the subject of the next chapter.
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Chapter 3

Real-time lattice QCD and anomaly
induced transport

The following chapter is based off of

• M. Mace, N. Mueller, S. Schlichting, S. Sharma. Non-equilibrium study of the Chiral
Magnetic Effect from real-time simulations with dynamical fermions. Phys. Rev. D
95, 036023 (2017). Copyright (2017) by the American Physical Society

Quantum anomalies are ubiquitous in nature and have lead to many fascinating phenom-
ena in quantum field theories. One of the most prominent examples occurs in the context
of electroweak baryogenesis, where the combined effects of anomalous baryon plus lepton
number violation and the C and CP violation may provide an explanation for the observed
matter/anti-matter asymmetry under suitable out-of-equilibrium conditions [123, 122, 198].
Even though analogous processes exist in QCD, where the conservation of the axial charge
j0
a is anomalously violated locally, observing such effects is a more subtle issue as QCD by

itself does not violate the discrete P and CP symmetries globally.
In recent years, a major discovery is that the combination of QCD and QED effects,

expected to occur in a Quark-Gluon Plasma (QGP), can lead to new macroscopic man-
ifestations of real-time quantum anomalies [132], which could potentially be observed in
high-energy heavy-ion collision experiments [131]. While several phenomena are presently
being discussed in this context (for review, see e.g. [142]), the basic idea can be summa-
rized as follows: topological transitions such as sphalerons [115, 121], which are expected
to occur frequently in the QGP [130], and pre-equilibrium (c.f. Chap. 2), can induce a net
axial charge asymmetry j0

a of light quarks which can fluctuate on an event-by-event basis.
Even though this axial charge asymmetry cannot be observed directly, in the presence of the
strong electromagnetic B⃗ field created in off-central heavy-ion collisions it can be converted
into an electric current j⃗ ∝ j0

aB⃗ [199]. This phenomenon is called the Chiral Magnetic Effect
(CME) (for review, see e.g. [200]) and can lead to observable consequences in heavy-ion
experiments [131, 201].

Experimental searches for the CME are ongoing at RHIC and the LHC, and intriguing
hints suggestive of the CME have been seen across different experiments [133, 134, 136].

57

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036023
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.036023


Based on the notion that the CME should lead to a separation of electric charges across
the direction of the magnetic field [131], the focus of experimental searches has been to
measure the effects of electric charge separation at early times by analyzing charge dependent
azimuthal correlations in the final state [202]. However, it turns out that conventional
explanations in terms of background effects also exist for the proposed observables and
so far it has been a challenge to disentangle signal and background [137, 138, 139, 203,
141, 204, 205]. Experimentally, this question will be addressed in the near future through a
proposed isobar run at RHIC [206]. By studying the variation of the charge separation signal
for two isobars, this experimental program is specifically designed to separate magnetic field
independent backgrounds from the genuine CME signal [207, 208, 209]. Of course, along with
the dedicated experimental efforts, there is a simultaneous need for an improved theoretical
understanding of the expected magnitude and features of possible CME signals [206].

Over the past few years, a variety of different theoretical approaches have been developed
to investigate the real-time dynamics of anomalous transport phenomena such as the CME
across different physical systems. In particular, this includes macroscopic descriptions in
terms of anomalous hydrodynamics [210, 211, 212, 213] as well as microscopic descriptions
based on chiral kinetic theory at weak coupling [214, 215, 216] and holographic methods
at strong coupling [217, 218, 219, 220, 221]. Despite all these developments, significant
uncertainties remain with regard to a quantitative theoretical description of the CME in
heavy-ion collisions [142, 206]. Since the lifetime of the magnetic field is presumably very
shorta [223, 144, 224], a dominant source of uncertainty is an incomplete understanding of
the dynamics of axial and vector charges during the early time pre-equilibrium stage [206].
In order to address precisely these uncertainties, we recently advocated the use of a classical-
statistical lattice approach which is specifically devised to explore the real time dynamics in
far-from-equilibrium situations [225].

Classical-statistical lattice techniques are a commonly used tool in the study of far-
from-equilibrium many body systems. In the context of high-energy heavy-ion collisions,
a classical-statistical treatment of the early time dynamics can be systematically derived
within the Color Glass Condensate effective field theory [48, 49, 9] in the weak-coupling
limit (αs ≪ 1): Since the phase space occupancies of gluons are non-perturbatively large
f ∼ 1/αs at initial times, quantum effects are suppressed by an additional power of αs and
the early time dynamics can be accurately described in terms of an ensemble of classical
Yang-Mills fields [186].

Over the past few years classical-statistical lattice techniques have been employed to study
various aspects of the early time, non-equilibrium dynamics, starting with the initial state
particle production [57, 145, 226, 62] towards the onset of the thermalization process [70,
186, 227, 228, 162]. While so far most works have focused on the dynamics of the gluon
fields, which dominate the dynamics in the high-occupancy regime (f ≫ 1), first attempts
have also been made to include dynamical fermions into the description of the early time
non-equilibrium dynamics [229, 230, 231, 232, 233, 234].

aEven though the lifetime of magnetic field induced by the spectators is extremely short, there is a
possibility that a large magnetic field can be induced the QCD medium, which may survive on a somewhat
longer time scale [222]. However, the spacetime evolution of the induced magnetic field crucially depends
e.g. on the chemical composition of the plasma at very early times and so far no firm conclusions have been
reached concerning its actual importance [206].
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Based on a classical-statistical lattice gauge theory description of the bosonic degrees
of freedom, the real-time quantum dynamics of fermions can be studied from first princi-
ples within this approach by numerically solving the operator Dirac equation [235, 236, 237,
238, 239]. While the approach itself is not new as similar techniques have been employed
previously e.g. in the context of strong field QED [237, 238, 240], cold electroweak baryoge-
nesis [241, 157] or cold quantum gases [242], we have achieved several improvements which
allowed us for the first time to study the 3+1 D dynamics of anomalous transport phenomena
in SU(Nc) ×U(1) theories [225].

This chapter is organized as follows: a detailed exposition of the theoretical formalism is
provided in Sec. 3.1, including for the first time a real-time formulation of overlap fermions
with exact chiral symmetry on the lattice. We then present several new physics results
on the real-time dynamics of axial charge production in Sec. 3.2 and anomalous transport
processes in Sec. 3.3. Even though our present numerical studies are performed in a minimal
setup of a single SU(2) sphaleron transition in a constant external U(1) magnetic field, they
provide novel insights into the real-time dynamics of anomalous transport effects and serve
as a first important step in extending this approach towards a more realistic description of
high-energy heavy-ion collisions. A compact summary of our findings and future perspectives
is presented in Sec. 3.4. Supplementary information is provided in the following Appendices.

3.1 Classical-statistical lattice gauge theory with dy-

namical fermions

We first describe our setup to perform classical-statistical real-time lattice gauge theory
simulations with dynamical fermions coupled simultaneously to non-Abelian SU(Nc) and
Abelian U(1) gauge fields. Even though we will only consider the SU(2)×U(1) case in our
simulations, the discussion is kept general in anticipation of future applications to the SU(3)×
U(1) case relevant to heavy-ion physics. Our simulations are performed in 3+1 dimensional
Minkowski spacetime (gµν = diag(1,−1,−1,−1)), and we will denote the spacetime coordinate
xµ as (t, x, y, z).

We employ temporal axial (At = 0) gauge and work in the Hamiltonian formalism of
lattice gauge theory, first formulated by Kogut and Susskind [38], where time t remains a
continuous coordinate while the spatial coordinates x = (x, y, z) are discretized on a lattice of
size Nx ×Ny ×Nz with periodic boundary conditions and lattice spacing as along each of the
three dimensions. We choose a compact U(1) gauge group, such that both the non-Abelian
and Abelian gauge fields are represented in terms of the usual lattice gauge link variables
Ux,i ∈ SU(N)×U(1), where x ∈ {0, . . . ,Nx − 1} × {0, . . . ,Ny − 1} × {0, . . . ,Nz − 1} denotes the
spatial position and i = x, y, z the spatial Lorentz index.

Since the classical-statistical lattice formulation for gauge fields has been extensively
discussed in the literature (see e.g. [227]), we will focus on the practical realization of
the fermion dynamics, noting that the foundations of the formalism have been laid out in
[235, 238]. Since there are various complications with respect to the realization of continuum
symmetries of fermions on the lattice, we have implemented two different discretization
schemes for fermions in this work. We will first discuss the real-time lattice formulation with
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Wilson fermions and subsequently describe the real-time lattice formulation with overlap
fermions.

3.1.1 Wilson Fermions in real time

Our starting point for the real-time lattice formulation with dynamical Wilson fermions is
the lattice Hamiltonian operator, which takes the general formb [243]

ĤW =
1

2
∑
x

[ψ̂†
x, γ

0( − i /D
s
W +m)ψ̂x]. (3.1)

Here the fermion fields obey the usual anti-commutation relations

{ψ̂†
x,a, ψ̂y,b} = δx,yδa,b , (3.2)

where a, b collectively stand for spin and color indices and −i /D
s
W denotes the tree-level

improved Wilson Dirac operator

−i /D
s
W ψ̂x =

1

2
∑
n,i

Cn[( − iγ
i − nrw)Ux,+niψ̂x+ni (3.3)

+ 2nrwψ̂x − ( − iγi + nrw)Ux,−niψ̂x−ni] .

By rw we denote the Wilson coefficient and we introduced the following short hand notation
for the connecting gauge links

Ux,+ni =
n−1

∏
k=0

Ux+ki,i , Ux,−ni =
n

∏
k=1

U †
x−ki,i. (3.4)

Based on an appropriate choice of the coefficients up to Cn it is possible to explicitly
cancel lattice artifacts O(a2n−1) in the lattice Hamiltonian. By choosing only C1 = 1 and all
other coefficients to vanish, one recovers the usual (unimproved) Wilson Hamiltonian, which
is only accurate to O(a). With the first two terms C1 = 4/3 and C2 = −1/6 we can achieve
an O(a3) (tree level) improvement, and by including also the third term C1 = 3/2 ,C2 =

−3/10 ,C3 = 1/30 we get an O(a5) (tree level) improvement.c

Operator decomposition and real-time evolution

While the gauge links Ux,i are treated as classical variables, it is important to keep track of
the quantum mechanical operator nature of the fermion fields. Evolution equations for the
fermion operators are derived from the lattice Hamiltonian, as

iγ0∂tψ̂x = (−i /D
s
W +m)ψ̂x , (3.5)

bWe omit explicit factors of the lattice spacing. Hence all definition are given in dimensionless lattice
units.

cNote that our improvement procedure parallels that of Ref. [244]. Alternatively one could follow the
procedure detailed in Ref. [245], leading to the appearance of the familiar Clover term.
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which can be solved on the operator level by performing a mode function expansion [235, 238].
Considering for definiteness an expansion in terms of the eigenstates of the Hamiltonian at
initial time (t = 0) the mode function decomposition takes the form

ψ̂x(t) =
1

√
V
∑
λ

(b̂λ(0)φ
u
λ(t,x) + d̂

†
λ(0)φ

v
λ(t,x)) , (3.6)

where λ = 1,⋯,2NcNxNyNz labels the energy eigenstates and b̂(0)/d̂†(0) correspond to the
(anti) fermion (creation) annihilation operators acting on the initial state (t = 0) [235, 238].
By construction the time dependence of the fermion field operator ψ̂ is then inherent to
the wave-functions φ

u/v
λ (t,x), whereas the operator nature of ψ̂ only appears through the

operators b̂(0), d̂†(0) acting in the initial state.
Since for a classical gauge field configuration the Dirac equation (3.5) is linear in the

fermion operator, it follows from the decomposition in Eq. (3.6) that the wave-functions

φ
u/v
λ (t,x) satisfy the same equation. One can then immediately compute the time evolution

of fermion field operator by solving the Dirac equation for each of the 4NcNxNyNz wave
functions. We obtain the numerical solutions using a leap-frog discretization scheme with
time step at = 0.02as.

In practice performing the decomposition in Eq. (3.5) amounts to the diagonalization of
the matrix

γ0( − i /D
s
W +m)φ

u/v
λ (0,x) = ±ελφ

u/v
λ (0,x) , (3.7)

at initial time, where ελ ≥ m denotes the energy of single particle states. In the simplest
case, where the gauge fields vanish at initial time, the eigenfunctions φuλ correspond to plane
wave solutions and can be determined analytically as discussed in App. C. However, if we
introduce a non-vanishing magnetic field B at initial time (see Sec. 3.1.3), this is no longer
the case and we instead determine the eigenfunctions φuλ numerically using standard matrix
diagonalization techniques.d

Initial conditions and operator expectation values

When computing any physical observable, one has to evaluate the operator expectation
values with respect to the initial state density matrix. We will consider for simplicity an
initial vacuum state, characterized by a vanishing single particle occupancy of fermions and
anti-fermions n

u/v
λ = 0 yielding the following operator expectation values

⟨[b̂†λ, b̂λ′]⟩ = +2(nuλ − 1/2)δλ,λ′ (3.8)

⟨[d̂λ, d̂
†
λ′]⟩ = −2(nvλ − 1/2)δλ,λ′ (3.9)

whereas all other combinations of commutators vanish identically. Specifically for this choice
of the initial state, the expectation values of a local operator Ô(t,x) involving a commutator
of two fermion fields can be expressed according to

Ô(t,x) =∑
y

Oab
xy

1

2
[ψ̂†

x,a(t), ψ̂y,b(t)] (3.10)

dDespite the fact that well known analytic solutions exist in the continuum in the case of a constant
homogenous magnetic field, we are not aware of an equivalent analytic solution to Eq. (3.7) on the lattice.
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The expectation value of this bilinear form can be expressed according to

⟨Ô(t,x)⟩ =
1

V
∑
λ,y

[φu†λ,a(t,x)O
ab
xyφ

u
λ,b(t,y)(nuλ − 1/2)

−φv†λ,a(t,x)O
ab
xyφ

v
λ,b(t,y)(nvλ − 1/2)] . (3.11)

as a weighted sum over the matrix elements of all wave-functions.

Vector and axial currents

We will consider vector jµv and axial currents jµa as our basic observables in this study. Since
time remains continuous in the Hamiltonian formalism, vector and axial densities are defined
in analogy to the continuum as

j0
v(x) =

1

2
⟨[ψ̂†

x, ψ̂x]⟩ , j0
a(x) =

1

2
⟨[ψ̂†

x, γ5ψ̂x]⟩ . (3.12)

and no extra terms occur for the time-like components. However, this is different for the
spatial components of the currents, where additional terms arise in the lattice definition.
By performing the variation of the Hamiltonian with respect to the Abelian gauge field, we
obtain the spatial components of the vector currents according to

jiv(x) =
n−1

∑
n,k=0

Cn
4

⟨[ψ̂†
x−ki, γ

0(γi − inrw)Ux−ki,ni ψ̂x+(n−k)i]

+ [ψ̂†
x+(n−k)i, γ

0(γi + inrw)Ux+(n−k)i,−ni ψ̂x−ki]⟩ .

Since the currents are derived from the improved Hamiltonian, these are by construction
improved which is important for reducing discretization effects as we will discuss in more
detail in the upcoming section.

Defining the axial currents requires a more careful analysis to recover the correct anomaly
relations in the continuum limit. In order to fully appreciate this point, let us first recall that
for a naive discretization of the fermion action (obtained e.g. by setting rw = 0) an unphysical
cancellation of the anomaly takes place, which can be understood as a consequence of the
doubling of fermion modes [246]. Hence the correct realization of the axial anomaly for
Wilson fermions relies on lifting the degeneracy between doublers by introducing the Wilson
term (rw ≠ 0), and achieving an effective decoupling of the fermion doublers in the continuum
limit [246]. Defining the spatial components of the axial current as

jia(x) =
n−1

∑
n,k=0

Cn
4

⟨[ψ̂†
x−ki, γ

0γiγ5 Ux−ki,ni ψ̂x+(n−k)i]

+ [ψ̂†
x+(n−k)i, γ

0γiγ5 Ux+(n−k)i,−ni ψ̂x−ki]⟩. (3.13)

it can easily be shown that the axial current for lattice Wilson fermions satisfies the exact
relation

∂µj
µ
a (x) = 2mηa(x) + rwW (x), (3.14)
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where ∂ijia(x) = j
i
a(x) − j

i
a(x − i) and ηa(x) denotes the pseudoscalar density

ηa(x) =
1

2
⟨[ψ̂†

x, iγ
0γ5ψ̂x]⟩ (3.15)

and W (x) is the explicit contribution from the Wilson term

W (x) =∑
n,i

n ⋅Cn
4

⟨[ψ̂†
x, iγ5γ0(Ux,+niψ̂x+ni − 2ψ̂x

+U †
x−ni,+niψ̂x−ni)] + h.c.⟩ (3.16)

Even though the lattice anomaly relation in Eq. (3.14) may appear unfamiliar at first sight,
it has been shown in the context of Euclidean lattice gauge theory, that the usual form is
recovered in the continuum limit, where the Wilson term gives rise to a non-trivial contri-
bution

rwW (x)→ −
g2

8π2
TrFµν(x)F̃

µν(x), (3.17)

Fµν being the field strength tensor and F̃ µν = 1
2ε
µνρσFρσ is it’s dual. It can also be shown

that the first deviations from the continuum limit appear as an odd function of rw and
improved convergence can be achieved by averaging of positive and negative values of the
Wilson parameter [247, 248]. Even though the generalization of these proofs to the non-
equilibrium case is non-trivial, explicit numerical verification has been reported in [234] and
we will confirm this behavior in Sec. 3.2 based on our own simulations.

3.1.2 Overlap fermions in real time

Constructing the Overlap Hamiltonian

Wilson fermions break the chiral and anomalous UA(1) symmetries explicitly on the lat-
tice. Explicit chiral symmetry is recovered only in the continuum limit for massless Wilson
fermionse. With the improvement procedures for the Wilson fermions one can reduce the
lattice artifacts responsible for chiral symmetry breaking, however it is still desirable to com-
pare our results with a lattice fermion discretization where the chiral and continuum limits
are clearly disentangled. Overlap fermions [32, 33] have exact chiral and flavor symmetries
on the lattice and the anomalous UA(1) symmetry can be realized even for a finite lattice
spacing, analogous to the way it happens in the continuum. Even though we will demon-
strate that within our simple setup one can obtain comparable results with improved Wilson
and Overlap fermions, we point out that the real-time overlap formulation may be important
for future real-time simulations that either go beyond classical background fields or involve
truly chiral fermions.

eNote that mass renormalization effects can render this issue problematic, as a carful tuning of the
Wilson bare mass is required in taking the correct continuum limit. However, since we will only consider the
dynamics of fermions in a classical background field, such problems are absent in the simulations present in
this work.
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We will now employ overlap fermions for real-time simulations of the anomaly induced
transport phenomena. As we did for the Wilson fermions, we consider a Hamiltonian for-
mulation which for massless overlap quarks,

Ĥov =
1

2
∑
x

[ψ̂†
x, γ0( − i /D

s
ov)ψ̂x] (3.18)

Here −i /D
s
ov is the 3D spatial overlap Dirac operator given by

−i /D
s
ov =M

⎛

⎝
1 +

γ0HW (M)
√
HW (M)2

⎞

⎠
(3.19)

and HW (M) is the original Wilson Hamiltonian kernel, defined in Eq. (3.1) but with Cn = 0
for n ≥ 2, and with the fermion mass m being replaced by the negative of the domain wall
height M , namely,

HW (M) = γ0(−i /D
s
W −M). (3.20)

The domain wall height takes values M ∈ (0,2]. In Appendix D we derive the Hamiltonian
for the first time in the overlap formalism. We note that it is assuring that this construction is
in exact agreement with the ansatz for the overlap Hamiltonian for vector-like gauge theories
first discussed in [249]. Furthermore simulating massive overlap quarks is straightforward
within this setup, which can be implemented by simply replacing

−i /D
s
ov → −i /D

s
ov (1 −

m

2M
) +m, (3.21)

where m is the quark mass we want to simulate.
The overlap Dirac matrix for massless quarks in three spatial dimensions, /D

s
ov satisfies

the Ginsparg-Wilson relation [250],

{ /D
s
ov, γ5} = −i /D

s
ovγ5 /D

s
ov . (3.22)

Additionally the overlap Dirac operator is γ0-hermitian, and satisfies a variant of Eq. (3.22),

{ /D
s
ov, γ0} = −i /D

s
ovγ0 /D

s
ov . (3.23)

As a consequence, it was shown in [249] that the Hamiltonian commutes with the operator

Q̂5 =
1

2
∑
x

[ψ†
x, γ5 (1 −

−i /D
s
ov

2
)ψx] . (3.24)

This allows one to define Q̂5 as the axial charge within the Hamiltonian formalism, whose
time evolution is given by the equation,

dQ̂5

dt
= i[Ĥov, Q̂5] +

∂Q̂5

∂t
. (3.25)

Since the first term in the right hand side of Eq. (3.25) is identically zero by construction,
the time dependence of the axial charge density operator arises from the explicit real-time
evolution of the matter fields in the definition of Q̂5. Hence in the real-time overlap formu-
lation, the axial charge is generated exactly in the same way as in the continuum. While
in [249] the definition of the axial charge operator, Q̂5, is motivated from the symmetries of
the overlap Hamiltonian, we show below how this definition arises naturally from the spatial
integral of the time component of the axial current.
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Vector and axial currents in the overlap formalism

Since the overlap operator has exact chiral symmetry on the lattice one can define chiral
projectors which project onto fermion states with definite handedness. The left and the
right-handed fermion fields can be defined in terms of lattice projection operators P̌± as

ψR/L =
1

2
(1 ± γ̌5)ψ ≡ P̌±ψ, (3.26)

where γ̌5 ≡ γ5(1+i /D
s
ov). In order to satisfy the Ginsparg-Wilson relation, the chiral projectors

for the conjugate fields are then

ψ†
R/L = ψ

† 1

2
(1 ± γ5) ≡ ψ

†P±. (3.27)

Instead of following the approach to define currents from the variation of the Hamiltonian,
we can define vector currents in analogy to the continuum by constructing these quantities
in terms of the physical left and right-handed fermion modes [251, 252]. Based on this
approach, the vector current for overlap fermions in real-time is constructed as

jµv =
1

2
⟨[ψ̂†

R, γ0γ
µψ̂R]⟩ +

1

2
⟨[ψ̂†

L, γ0γ
µψ̂L]⟩

=
1

2
⟨[ψ̂†, γ0γ

µ(1 −
−i /D

s
ov

2
)ψ̂]⟩; (3.28)

similarly the axial current is

jµa =
1

2
⟨[ψ̂†

R, γ0γ
µψ̂R]⟩ −

1

2
⟨[ψ̂†

L, γ0γ
µψ̂L]⟩

=
1

2
⟨[ψ̂†, γ0γ

µγ5(1 −
−i /D

s
ov

2
)ψ̂]⟩ . (3.29)

Numerical Implementation of the overlap operator

The overlap Hamiltonian consists of a matrix sign function of HW (M), defined in Eq. (3.19).
The inverse square root of HW (M)2 can be expressed as a Zolotarev rational function [253,
254, 255, 256],

1
√
HW (M)2

=
NO
∑
l=1

bl
dl +HW (M)2

. (3.30)

To compute Eq. (3.30), first we compute the coefficients bl and dl from the smallest and
largest eigenvalues of HW (M)2 [255]. Once the Zolotarev expansion coefficients dl are
determined, we implement a multi-shift conjugate gradient solver to calculate the inverse
of dl + HW (M)2. The lowest and the highest eigenvalues for HW (M)2 are calculated us-
ing the Kalkreuter-Simma Ritz algorithm [257] with 20 restarts and a convergence crite-
rion of 10−20. We find that taking NO = 20 terms in the Zolotarev polynomial results in
∣sign(HW )2 − 1∣ < 10−9. We note that the lowest and highest eigenvalues of HW (M)2 are
sensitive to the choice of the domain wall height M . We have chosen M such that we obtain
the best approximation to the sign function as well as the Ginsparg-Wilson relation. For the
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sphaleron configuration we studied in this work the optimal choice was M ∈ [1.4,1.6) (see
App. E for more details).

For the multi-shift conjugate gradient, the convergence of the conjugate gradient is de-
termined by the smallest dl, and the convergence criterion is set to ∣HW (M)2∣−1 < 10−16. For
the largest lattice volumes that we consider in this study and for the single SU(2) sphaleron
gauge configuration to be introduced in Sec. 3.1.3, the conjugate gradient algorithm reaches
the convergence criterion before the maximum number of steps, which we choose to be 2000.
We have also checked that the resultant overlap Dirac operator satisfies the Ginsparg-Wilson
relation, and found this is satisfied to a precision of O(10−9). We have also carefully studied
the M -dependent cut-off effects for the vector and axial-vector currents which we would
illustrate in the subsequent sections as well as in the Appendix E. We find that the cut-off
effects in the current operators are fairly independent of the choice of M for M ∈ [1.4,1.6).

Additionally, we have also implemented the overlap Hamiltonian in the presence an ad-
ditional static U(1) magnetic field to be introduced in Sec. 3.1.3. For this, we include the
U(1) fields in the Wilson Hamiltonian in Eq. (3.19). We find that the sign function is im-
plemented to a precision of 10−9 and the overlap Dirac operator in this case satisfies the
Ginsparg-Wilson relation to a precision of 10−8.

3.1.3 Non-Abelian and Abelian gauge links

Within the classical-statistical approach, the dynamics of non-Abelian and Abelian fields is
usually determined self-consistently by the solution to the classical Yang-Mills and Maxwell
equations. In particular, the presence of the fermionic currents in the equations of motion
for the gauge fields leads to a back-reaction of fermions, which is naturally included in the
approach [235, 236]. Even though it will be desirable to investigate such effects in the long
run, in the present study we will limit ourselves to a simpler set-up. Instead of a self-
consistent determination of the non-Abelian and Abelian gauge fields, we will treat both of
them as classical background fields whose dynamics is a priori prescribed.

SU(2) gauge links

Concerning the SU(2) gauge links, the dynamics is chosen to mimic that of a sphaleron
transition by constructing a dynamical transition between topologically distinct classical
vacua. Starting from the trivial vacuum solution U

SU(2)
x,i = 1 at initial time t = 0, we construct

a smooth transition to a topologically non-trivial vacuum U
SU(2),G
x,i at time t ≥ tsph through

a constant chromo-electric field, corresponding to the shortest path in configuration space,

Ea
x,i = {

i
gastsph

logSU(2)(U
SU(2),G
x,i ) , 0 < t < tsph

0 , t > tsph

(3.31)

during which the gauge links are constructed according to

U
SU(2)
x,i (t) =

⎧⎪⎪
⎨
⎪⎪⎩

e−igastEa
x,i

σa

2 U
SU(2)
x,i (0) , 0 < t < tsph

U
SU(2),G
x,i , t > tsph

(3.32)
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Since the different classical vacua are related to each other by a gauge transformation, we
can easily construct a topologically non-trivial vacuum solution

U
SU(2),G
x,i = GxG

†
x+i. (3.33)

by specifying a gauge transformation Gx with a non-zero winding number. Based on the
usual parametrization of the SU(2) gauge group,

Gx = α0(x)1 + iαa(x)σ
a , (3.34)

the coordinates αa(x) of the gauge transformation on the group manifold are obtained by
a distorted stereographic projection of the lattice coordinates x = (x, y, z), which has a
non-zero Brouwer degree. By virtue of our construction detailed in App. F, the sphaleron
transition profile (i.e all points that map away from the trivial point Gx = 1) is localized on
a scale rsph, which we will refer to as the characteristic size scale of the sphaleron.

U(1) gauge links

With regard to the Abelian gauge links we have chosen to implement a homogenous magnetic
field B⃗ = Bẑ along the z-direction. Since on a periodic lattice the magnetic flux qa2

sBNxNy

is quantized in units of 2π [258], a spatially homogenous magnetic field cannot be varied
continuously and we have chosen to keep the magnetic field constant as function of time. By
choosing the U(1) components of the gauge links according to [259],

U
U(1)
x,x = {

eia
2
sqBNxy , x = Nx − 1
1 , otherwise

(3.35)

U
U(1)
x,y = e−ia

2
sqBnx (3.36)

with Ux,z = 1 and a2
sqB =

2πnB
NxNy

we can then realize different magnetic field strength by
varying the magnetic flux quantum number nB.

3.2 Sphaleron transitions & real-time dynamics of ax-

ial charge production in SU(N)

We now turn to the results of our simulations and first study the dynamics of axial charges
during a sphaleron transition in the absence of electro-magnetic fields (B = 0). Since the
realization of the axial anomaly on the lattice is non-trivial a first important cross-check is
to verify that the continuum version of the anomaly relation

∂µj
µ
a (x) = 2mηa(x) − 2∂µK

µ(x) , (3.37)

where ∂µKµ(x) = g2

16π2 trFµνF̃ µν denotes the divergence of the Chern-Simons current, is cor-
rectly reproduced in our simulations. If we focus on the volume integrated quantities

J0
a(t) = ∫ d3x j0

a(t,x) (3.38)
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Figure 3.1: A comparison of the net axial charge generated during a sphaleron transition for
improved Wilson (NLO) fermions with mrsph = 1.9 ⋅10−2 versus massless overlap fermions on
a 163 lattice. Top: The net axial charge for both discretizations accurately tracks ∆NCS due
to the sphaleron transition. Bottom: Deviations from Eq. (3.39) are shown.

the net axial charge J0
a can be directly related to the Chern-Simons number difference,

according to

∆J0
a(t) = −2∆NCS(t) , (3.39)

which changes by an integer amount over the course of the sphaleron transition. Specifically,
for the topological transition constructed in Sec. 3.1.3, ∆NCS(t ≥ tsph) = −1 and one expects
∆J0

a(t) = 2 units of axial charge to be created during the transition.

Simulation results for the real-time evolution of the net axial charge J0
a(t) are compactly

summarized in Fig.3.1, where we compare results obtained for massless overlap fermions on
a 163 spatial lattice with the results obtained for light Wilson fermions (mrsph = 1.9 ⋅ 10−2).
Since the typical size scale of the sphaleron rsph and duration of the sphaleron transition tsph

are the only dimensionful parameters in this case, in the following all spatial and temporal
coordinates will be normalized in units of rsph and tsph respectively; if not stated otherwise
we employ tsph/rsph = 3/2.

Since we employ a fermionic vacuum as our initial condition, the axial charge is zero
initially, as there are no fermions present. As the sphaleron transition takes place fermions
are dynamically produced and an axial imbalance is created. By comparing the evolution of
J0
a(t) with that of the Chern-Simons number, extracted independently from the evolution

of the gauge fieldsf, it can be clearly seen that the global version of the anomaly relation in
Eq. (3.39), is satisfied to good accuracy.

Concerning the comparison of different fermion discretizations, we find that the results
for improved Wilson fermions (next to leading order) agree nicely with the ones obtained in
the overlap formulation. However, we strongly emphasize that the operator improvements
for Wilson fermions are essential to achieve this level of agreement on the relatively small 163

lattices. If in contrast one was to consider unimproved Wilson fermions, much finer lattices

fWe use an an O(a2) improved lattice definition described in detail in [150, 194].
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Figure 3.2: The local anomaly budget at the center of the sphaleron transition using improved
Wilson (NLO) and overlap fermions. The solid, dash-dotted, and dotted lines represent
data for improved Wilson (NLO) on a 163 lattice, 323 lattice, and overlap fermions on a 163

lattice respectively. The gray line represent the local derivative of the Chern Simons current,
−2∂µKµ.

are needed to correctly reproduce the continuum anomaly and we refer to App. E for further
performance and convergence studies.

Even though our present results are obtained for a single smooth gauge field configuration,
an important lesson can be inferred for upcoming studies on more realistic gauge fields. Since
the computational cost of the simulations scales as ∝ N2

xN
2
yN

2
z , simulations on fine lattices

are often prohibitively expensive and it is therefore of utmost importance to employ improved
fermionic operators in real-time lattice simulations with dynamical fermions.

Based on the excellent agreement obtained between different lattice and continuum results
for volume integrated quantities, we can now proceed to study the microscopic dynamics of
axial charge production in more detail. In Fig. 3.2 we present a breakup of the different
contributions, ∂tj0

a, ∂ij
i
a and −2∂µKµ, to the local anomaly budget (c.f. Eq. (3.37)) evaluated

at the center (x, y, z) = (Nx/2,Ny/2,Nz/2) of the sphaleron transition profile. We have kept
the volume fixed in units of rsph and to compare quantities between different lattice spacings
and different fermion discretizations we have scaled the observables by appropriate powers
of rsph. Besides the rate of increase of the axial charge density ∂tj0

a, a significant fraction
of the anomaly budget is compensated by the divergence of the axial current ∂ijia, signaling
the outflow of axial charge from the center to the edges of the transition region. Hence,
even though an axial charge imbalance is dominantly produced in the center of a sphaleron,
axial charge redistributes as a function of time and the axial imbalance at the center again
decreases towards later times.

As discussed in Sec. 3.1.1, the lattice anomaly relation for Wilson fermions is realized
through the non-trivial continuum limit of the Wilson term W (x) also depicted in Fig. 3.2.
Indeed, the evolution of the Wilson term W (x) follows that of the evolution of divergence
of the Chern-Simons current −2∂µKµ, albeit superseded by fast oscillations. However, the
oscillations average out in both space and time yielding a faster convergence for time and/or
volume averaged quantities. It also re-assuring that the comparison of the results for almost
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massless Wilson and chiral overlap fermions shows good overall agreement, although minor
deviations remain on the presently available lattice sizes.

3.2.1 Quark mass dependence

So far we have analyzed the non-equilibrium dynamics of axial charge production for (almost)
chiral fermions. We will now vary the quark mass to investigate the effects of explicit chiral
symmetry breaking on axial charge production. Before we turn to our physical results a
technical remark is in order. Since we find that for Wilson fermions cut-off effects are
more pronounced for larger values of the quark mass, we performed rw averaging of our
results, i.e. we performed real-time evolutions with Wilson parameters rw = ±1 respectively
and calculated observables by averaging the results over each value of rw. Based on this
procedure, a compact summary of our results for massive fermions is compiled in Fig. 3.3,
showing freeze-frame profiles of the local anomaly budget for different values of the quark
mass. Different panels show profiles of the (four) divergence of the Chern-Simons current
−2∂µKµ, the pseudoscalar density η, the divergence of the axial current ∂ijia and the time
derivative of the local axial charge density ∂tj0

a, along one of the spatial directions according
to

∂µK
µ(z, t) =

g2

8π2 ∫ d2x� E
a
i (x)B

a
i (x) , (3.40)

and similarly for the other components at three different times t/tsph = 1/3, 2/3, 1 of the
sphaleron transition. Different curves in each panel correspond to the results obtained for
different values of the fermion mass ranging from almost massless quarks mrsph = 1.9 ⋅ 10−2

to intermediate values of mrsph = 1.
Starting with the dynamics at early times (t/tsph = 1/3), the time derivative of the axial

charge density shows a clear peak at the center corresponding to the creation of a local
imbalance due to the sphaleron transition. While for almost massless quarks mrsph = 1.9⋅10−2,
the rate of axial charge production ∂tj0

a is approximately equal to the divergence of the Chern-
Simons current −2∂µKµ, for heavier quark masses a significant fraction of the local anomaly
budget is balanced by the contribution of the pseudoscalar density 2mη resulting in a smaller
rate of axial charge production, both locally and globally.

Once a local imbalance of axial charge is created at the center, axial currents jia with a
negative (positive) divergence ∂ijia at the center (edges) develop and contribute an outflow
of the axial charge density away from the center. Even though the divergence of the Chern-
Simons current −2∂µKµ remains positive at times t/tsph = 2/3, its contribution to the axial
charge production rate j0

a at the center is largely compensated by the outward flow of axial
currents ∂iji. In particular, for massive quarks (mrsph > 1/2), the combined effects of axial
charge dissipation due to a large pseudoscalar density 2mη and outflowing currents ∂iji lead
to a depletion of axial charge at the center (∂tj0

a < 0) even though the sphaleron transition
is still in progress.

Subsequently at even later times, axial charge continues to spread across the entire volume
leading to a depletion of axial charge at the center and an increase towards the edges. In
the case of massive quarks, the pseudoscalar density contributes towards the dissipation of
axial charges, and the global imbalance J0

a decreases significantly as a function of time. Our
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Figure 3.3: One dimensional profiles of the contributions to the anomaly equation for different
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sph. As can be seen, the rate of axial charge density production at the
center of the sphaleron is reduced due to axial currents carrying charge away and, in the
case of a finite quark mass, by the pseudoscalar density, signaling chirality changing fermion-
fermion interactions.
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Figure 3.4: Profiles of the axial and vector densities and currents at different times of the
real-time evolution for fermions with mrsph = 1.9 ⋅10−2 for strong magnetic fields qBr−2

sph = 7.0
at times t/tsph = 0.6,0.9,1.1,1.3,1.6.

simulations clearly point to the importance of including such dissipative effects due to a
finite quark masses, and we will further elaborate on their influence on the dynamics of axial
and vector charges in Sec. 3.3.2.

3.3 Chiral magnetic effect & Chiral magnetic wave in

SU(N)×U(1)

We now turn to investigate the real-time dynamics of fermions during a sphaleron transition
in the presence of a strong (Abelian) magnetic field. Simulations are performed on larger
24 × 24 × 64 lattices with improved Wilson fermions. We consider a homogenous magnetic
field B in the z direction (see Sec. 3.1.3) and prepare the initial conditions as a fermionic
vacuum in the presence of the magnetic field. Since the Abelian magnetic field introduces
a non-trivial coupling between the dynamics of vector and axial charges due to the Chiral
Magnetic Effect (CME) and Chiral Separation Effect (CSE) [260], the SU(N)×U(1) system
exhibits interesting dynamics which we addressed previously in [225]. Below we significantly
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expand upon our earlier results, concerning in particular the quark mass and magnetic
field dependence of the dynamics. Before we address these points in more detail, we will
briefly illustrate the general features of the dynamics of vector and axial charges based on
simulations for light quarks mrsph = 1.9 ⋅ 10−2 in a strong magnetic field qBr−2

sph = 7.0.

The basic features of the dynamics of vector and axial charges are compactly summarized
in Fig. 3.4, showing three dimensional profiles of the axial and vector charge (j0

a/v) and current

(jz
a/v) densities at different times (t/tsph = 0.6,0.9,1.1,1.3,1.6) during and after a sphaleron

transition. As discussed in the previous section, the SU(N) sphaleron transition leads to the
creation of an axial imbalance observed at early times in the top panel of Fig. 3.4. However,
in the presence of the U(1) magnetic field, the generation of an axial charge imbalance is now
accompanied by the creation of a vector current along the magnetic field direction (CME),
which can be observed in the bottom panel of Fig. 3.4. Clearly the spatial profile of the
vector current follows that of the axial charge distribution as expected from the constitutive
relation jzv ∝ j0

aB
z for the Chiral Magnetic Effect.

As seen in the second panel of Fig. 3.4 the vector current leads to a separation of vector
charges along the direction of the magnetic field at early times. Over the timescale of the
sphaleron transition, positive (red) and negative (blue) charges accumulate at the opposites
edges of the sphaleron transition region and give rise to a dipole-like structure of the vector
charge distribution. Due to the Chiral Separation Effect (CSE), the presence of a local vector
charge imbalance at the edges in turn induces an axial current which is depicted in the third
panel of Fig. 3.4 and leads to a separation of axial charge along the direction of the magnetic
field. Ultimately the interplay of CME and CSE lead to formation of a Chiral Magnetic
Wave, associated with the coupled transport of vector and axial charges along the direction
of the magnetic field which can be observed at later times in Fig. 3.4.

Specifically for light fermions in the presence of a strong magnetic field, the emerging
wave packets of axial charge and vector current are strongly localized and closely reflect
the spacetime profile of the sphaleron. However, as we will see shortly this is no longer
necessarily the case for heavier fermions or weaker magnetic fields. We also note that in our
present setup, the dynamics at late times is somewhat trivial as the outgoing shock-waves
are effectively propagating into the vacuum. While in a more realistic scenario the number
of sphaleron transitions at early times is presumably still of O(1), as we saw in Chapter 2,
the chiral shock-waves are created from and move through a hot plasma and it will be
interesting to observe how the subsequents dynamics is altered by further interactions with
the constituents of the plasma.

Before we analyze the anomalous transport dynamics in more detail, we briefly comment
on the comparison of Wilson and Overlap discretizations in the SU(2)×U(1) case. In order
to perform a quantitative comparison of our results with different fermion discretizations,
we will focus on the longitudinal profiles of vector and axial charge densities defined as

j0
a/v(t, z) = ∫ d2x� j

0
a/v(t,x�, z). (3.41)

Our results for somewhat smaller magnetic field strength qB = 3.5r−2
sph are compared in

Fig. 3.5, showing freeze-frame profiles of the longitudinal vector and axial charge distribu-
tion at three different times t/tsph = 0.34,1,1.67. We observe a striking level of agreement
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Figure 3.5: Comparison of longitudinal profiles of the vector (left) and axial (right) charge
densities for improved Wilson (NLO) fermions and overlap fermions with masses mrsph =

1.9 ⋅ 10−2 in an external magnetic field qB = 3.5r−2
sph at times t/tsph = 0.34, 1, 1.67 (top to

bottom).

between Wilson and Overlap results. Only at late times minor deviations between differ-
ent discretizations become visible. However, at this point finite volume effects also start to
become significant on the smaller 16 × 16 × 32 lattices employed for this comparison.

3.3.1 Magnetic field dependence & comparison to anomalous hy-
drodynamics

We will now investigate in more detail the magnetic field strength dependence of these
anomalous transport phenomena. Even though the basic features of the dynamics of vector
and axial charges observed in Fig. 3.4 in the strong field limit remain the same for all
values of the magnetic field considered in our study, some interesting changes occur when
the magnitude of the magnetic field, qB, becomes comparable to the size of the inverse
sphaleron radius squared, r−2

sph, which is the other physical scale in our simulations.

Before we turn to the discussion of our simulation results, it is useful to first discuss how
the magnetic field dependence enters in a macroscopic description in anomalous hydrody-
namics [210]. In anomalous hydrodynamics the dynamics of vector and axial currents (in the
chiral limit) is uniquely determined by the (anomalous) conservation of the (axial) vector
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currents

∂µj
µ
v = 0 , ∂µj

µ
a = −2∂µK

µ , (3.42)

once the constitutive relations for the currents are enforced. In the ideal limit the constitutive
relations take the form [210]

jµv,a = nv,au
µ + σBv,aB

µ , (3.43)

and the magnetic field dependence enters only via the explicit B dependence of the transport
coefficient σB

v/a. In the weak field regime (qB ≪ r−2
sph) the conductivity is typically independent

of the magnetic field and the CME/CSE currents are linearly proportional to the magnetic
field B. In contrast in the strong field limit (qB ≫ r−2

sph), the conductivity of a free fermi gas

becomes σB
v/a = na/v/B [132] for a unit charge and the late time dynamics of vector and axial

currents admits a simple analytic solution [225]

j0
v,a(t > tsph, z) =

1

2 ∫
tsph

0
dt′ [S(t′, z − c(t − t′)) ∓ S(t′, z + c(t − t′))] (3.44)

where S(t, z) = −
g2

8π2 ∫ d
2x�Tr F µνF̃µν reflects the spacetime profile of the sphaleron tran-

sition. Most remarkably, the solution in Eq. (3.44) shows explicitly that the anomalous
transport dynamics becomes independent of the strength of the magnetic field B in the
strong field limit. However, this asymptotic scenario is unlikely to be realized in real-world
experiments and it is hence important to understand the real-time dynamics of vector and
axial charges beyond such simple asymptotic solutions.

Our simulation results for different magnetic field strength qBr2
sph =0.8, 1.6, 3.5, 7.0

are presented in Fig. 3.6, which shows the longitudinal profile of vector and axial charges
densities j0

a/v(z, t) defined in Eq. (3.41) for various times during and after the sphaleron

transition. Even though the production of axial charge j0
a(z, t) during the transition (t < tsph)

is not altered significantly, the subsequent propagation of the chiral shock-waves is clearly
affected by the strength of the magnetic field. While for the largest value of qBr2

sph = 7.0,
the magnetic field can be interpreted as dominating over all other scales and the late time
dynamics is accurately described by the asymptotic solution to anomalous hydrodynamics
in Eq. (3.44), significant deviations from the asymptotic behavior occur for smaller values of
qBr2

sph = 0.8, 1.6, 3.5. Specifically, one observes from Fig. 3.6 that a smaller CME current
is induced for smaller values of the magnetic field, resulting in a reduced height of the
vector charge peaks; in contrast the propagation velocities and profiles of the vector charge
distribution are unaffected within this range of parameters.

Since a smaller amount of vector charge imbalance in turn leads to a reduction of the
induced axial currents related to the CSE, clear differences emerge for the distribution of
axial charges at later times. While for strong magnetic fields essentially all of the axial charge
is subject to anomalous transport away from the center, a significant fraction of axial charge
remains at the center for weaker magnetic field. Considering for instance the curves for
qBr2

sph = 1.6, the axial charge distribution at later times can be thought of as a superposition
of the free (B = 0) distribution and the Chiral Magnetic Wave contributing clearly visible
peaks at the edges.
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One can further quantify the magnetic field dependence by extracting the amount of
vector charge separation achieved for different magnetic field strength. More precisely, we
compute

∆J0
v (t) = ∫

z≥0
dz j0

v(t, z) , (3.45)

corresponding to integrated the amount of vector charge contained in one of the oppositely
charged wave-packets in Fig. 3.6. Simulation results for the magnetic field dependence of
the charge separation signal are presented in Fig. 3.7, where different symbols correspond to
the value of ∆J0

v (t) at t = 3/2tsph and respectively the maximum value of ∆J0
v (t) observed

over the entire simulation time. In accordance with the expectation that the CME current
is linearly proportional to the magnetic field strength in the weak field regime, one observes
an approximately linear rise of the charge separation signal at smaller values of the magnetic
field strength qB ≲ 4/r2

sph. In contrast for larger magnetic fields, the amount of vector charge
separation begins to saturate, asymptotically approaching unity in the strong field limit.

Within our microscopic real-time description we can also attempt to verify directly to
what extent the constitutive relations in Eq. (3.43) – assumed in a macroscopic description in
anomalous hydrodynamics – are satisfied throughout the dynamical evolution of the system.
In order to perform such a comparison, we extract the vector and axial charge ∆J0

a/v(t)

as well as the corresponding current densities ∆Jz
a/v(t) for the left- and right moving wave

packets, and investigate the following ratios of net currents to net charges

CCME(t) =
∆Jzv (t)

∆J0
a(t)

, CCSE(t) =
∆Jza(t)

∆J0
v (t)

. (3.46)

If one assumes the validity of the constitutive relations in Eq. (3.43), one can immediately
verify that both CCME and CCSE tend towards unity in the strong field limit [132]. In
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contrast, the weak field regime constitutive relations take the form ∆Jz
v/a ∝ (∆J0

a/v)
1/3qB

at low temperatures and ∆Jz
v/a ∝ (∆J0

a/v)qB at high temperatures. Even though the ratios
CCME and CCSE are no longer time independent constants in this limit, their numerical values
are significantly smaller than unity and decrease as a function of axial/vector charge density
[132].

Our results for these ratios are presented in Fig. 3.8, where we show the time evolution
of Ceff

CME and Ceff
CSE for four different values of the magnetic field strength. Irrespective of

the strength of the magnetic field one observes the same characteristic behavior of Ceff
CME

characterized by a rapid rise towards an approximately constant behavior at later times.
In contrast for Ceff

CSE, the axial current Jza also receives a contribution from the outflow of
axial charge that is independent of the vector charge density J0

v . Since the vector charge
imbalance J0

v is initially small, this contribution dominates over the anomalous transport
contribution at early times. Hence the current ratio Ceff

CSE approaches its asymptotic value
from above and can also exhibit asymptotic values larger than unity for small field strength.

Quantitatively the values observed for Ceff
CME (Ceff

CSE) at later times are close to the strong
field limit for qB = 3.5,7 and slightly smaller (larger) for qB = 0.8,1.6 and it is also important
to point out that the initial build up of the CME and CSE currents occurs on a shorter time
scale for larger magnetic field strength. Oscillations around the constant value are also clearly
visible at late times and the oscillation frequency again depends strongly on the strength of
the magnetic field. However we can presently not exclude the possibility that the oscillations
at late times are due to residual finite volume effects in our simulations and we will therefore
not comment further on this behavior.

While the results in Fig. 3.8 nicely confirm the approximate validity of constitutive rela-
tions at late times, it is also striking to observe that vector (CME) and axial (CSE) currents
are not created instantaneously from the local imbalance of axial or vector charges. Con-
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Figure 3.9: Longitudinal profiles of the vector (left) and axial (right) charge densities for
different fermion masses in units of r−1

sph at times t/tsph = 0.67, 1.67, 2.67 (top to bottom).

versely the results in Fig. 3.8 serve as a clear illustration of the retarded response and strongly
suggest that, in order to describe the dynamics on shorter time scales, macroscopic descrip-
tions should be modified to account for a finite relaxation time of anomalous currents. In the
context of anomalous hydrodynamics, a natural way to include such effects is to follow the
example of Israel and Stewart [97] by promoting the anomalous contribution to the currents
to a dynamical variable ξµ

v/a that relaxes to the constitutive value σB
v/aB

µ on a characteristic
time scale τv/a. Since in high-energy heavy-ion collisions the lifetime of the magnetic field
is presumably very short, it appears that the introduction of a finite relaxation time could
indeed have quite dramatic effects. Hence it would also be important to understand more
precisely which elementary processes determine the relevant time scale for the anomalous
relaxation times. However, this question is beyond the scope of the present work.

3.3.2 Effects of finite Quark Masses

We discussed in Sec. 3.2.1 how explicit chiral symmetry breaking due to finite quark masses
can significantly alter the production of an axial charge imbalance. We will now investigate
in more detail the effects of explicit chiral symmetry breaking on the subsequent dynamics,
characterized by the anomalous transport of axial and vector charges in the presence of a
background magnetic field. Our results for different fermion masses are compactly summa-
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rized in Fig. 3.9, where we show again the longitudinal profiles of vector and axial charge
densities at different times during and after the sphaleron transition. While the simulations
are performed with improved Wilson fermions for a relatively large magnetic field strength,
qBr2

sph = 7.0, we vary the masses from almost chiral fermions to fermions with large masses
of the order of the inverse sphaleron size, mrsph = 1, where dissipative effects clearly become
important on the time scales of interest.

In accordance with the discussion in Sec. 3.2.1 one observes from Fig. 3.9 that for heavier
fermions (mrsph = 0.5,1) the production of an axial charge imbalance at early times (t/tsph =

0.67) is suppressed compared to the almost massless case mrsph = 1.9 ⋅ 10−2. Since the
anomalous vector currents are locally proportional to the axial charge imbalance, a similar
suppression of the vector charge density of heavier fermions (mrsph = 0.5,1) can also be
observed at early times (t/tsph = 0.67). Over the course of the evolution, drastic differences
in the distribution of vector and axial charges emerge between light and heavy fermions. One
clearly observes from Fig. 3.9, how at times t/tsph = 1.67,2.67 the overall amount of axial
and vector charge separation is strongly suppressed for larger values of the fermion mass
(mrsph = 0.5,1). Moreover, as one would naturally expect for massive charge carriers, it is
also evident from Fig. 3.9 that the propagation velocity of the chiral magnetic shock-waves
decreases for larger values of the quark mass.

In order to further quantify the quark mass dependence of the anomalous transport
effects, we follow the same procedure outlined in Sec. 3.2.1 and extract the vector and
axial charge separation. Our results for the amount of vector/axial charge separation ∆J0

v/a
are presented in Fig. 3.10 as a function of the quark mass. Different symbols in Fig. 3.10
correspond to the vector/axial charge separation observed at a fixed time t/tsph = 1.5 and
respectively the maximum value throughout the simulation (0 ≤ t/tsph ≤ 3). Most strikingly,
one observes from Fig. 3.10 that clear deviations from the (almost) massless case emerge
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already for rather modest values of the quark mass. One finds that, for example for mrsph =

0.25, the observed vector charge separation signal is readily reduced by approximately 30%.
Considering even heavier quarks up to mrsph = 1, the vector charge separation signal almost
disappears completely as dissipative effects dominate the dynamics.

In view of the significant mass dependence observed in our simulations it would be inter-
esting to compare our microscopic simulation results at finite quark mass to a macroscopic
description of anomalous transport. However, we are presently not a aware of a macroscopic
formulation that properly includes the effects of explicit chiral symmetry breaking. Even
though mass effects might be small for phenomenological applications [212, 213, 261] in the
light (u, d) quark sector, they appear to be highly relevant with regard to the phenomeno-
logical description of the CME in the strange quark sector. Based on our results in Fig. 3.10,
we expect a significant reduction of the possible CME signals for strange quarks, such that
overall the situation may be closer to a two-flavor scenario [201].

3.4 Conclusions & Outlook

We presented a real-time lattice approach to study non-equilibrium dynamics of axial and
vector charges in the presence of non-Abelian and Abelian fields. Even though the approach
itself is by now well known and established in the literature, we pointed out several improve-
ments related to the choice of the fermion discretization which are important to achieve a
reliable description of the dynamics of axial charges in particular. Specifically, we pointed
out that the use of tree-level improvements and r-averaging for the Wilson operator are es-
sential to accelerate the convergence to the continuum limit and produce physical results on
available lattice sizes. We also discussed the advantages and disadvantages of using overlap
fermions in real-time lattice simulations and, to the best of our knowledge, performed the
first real-time 3+1D lattice simulations with dynamical fermions with exact chiral symmetry.

Based on our real-time non-equilibrium formulation, we studied the dynamics of axial
charge production during an isolated sphaleron transition in SU(2) Yang-Mills theory and
explicitly verified that the axial anomaly recovered is satisfied to good accuracy at finite
lattice spacing for both improved Wilson and overlap fermions. Beyond the dynamics for light
fermions, we also investigated dissipative effects due to finite quark mass and reported how
the emergence of a pseudoscalar density leads to a significant reduction of the axial charge
imbalance created. Even though at present the sphaleron transition in the background gauge
field configuration was constructed by hand and does not satisfy the equations of motion for
the non-Abelian gauge fields, we emphasize that approximations of this kind made within our
exploratory study can be relaxed in the future without any drawbacks on the applicability
of our real-time lattice approach.

By introducing a constant magnetic field, we subsequently expand our simulations to
a SU(2) × U(1) setup to study the real-time dynamics of anomalous transport processes
such as the Chiral Magnetic and Chiral Separation Effect. We showed how the interplay
of CME and CSE lead to the formation of a chiral magnetic shock-wave and demonstrated
explicitly the dynamical separation of vector charges along the magnetic field direction. We
also investigated in detail the quark mass and magnetic field dependence of these anomalous
transport effects. Most importantly, we showed that the amount of vector charge separation
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created during this process is linearly proportional to the magnetic field strength (at small
qB) and decreases rapidly as a function of the quark mass. Even though for light (u, d)
flavors, such quark mass effects are most likely negligible over the typical time scales of a
heavy-ion collision, the situation is different with regard to strange quarks, where it ap-
pears necessary to take these effects into account in a phenomenological description. Since
in contrast to the vector current the axial current is not conserved, it would be extremely
important to investigate how creation and dissipation of axial charges, which are accurately
described within our microscopic framework, can be accounted for within a macroscopic de-
scription. On a similar note, we also studied the onset of the CME and CSE currents and
reported first evidence for a finite relaxation time of vector and axial currents. Even though
a finite relaxation time may have important phenomenological consequences, given the short
lifetime of the magnetic field in high-energy heavy-ion collisions, it is presently unclear which
microscopic processes determine the relevant time scale and we intend to return to this issue
in a future publication. Our simulations were performed for an isolated sphaleron transition
(see Sec. II C 1), allowing us to clearly observe non-perturbative generation and transport
of axial charges in a topologically non- trivial background. However, the results presented
in this study can only serve as a qualitative benchmark of the real-time dynamics of anoma-
lous transport effects. In a more realistic scenario one expects the quantitative behavior of
anomalous transport to be modified through further interactions with the constituents of
the plasma, and it will be interesting to explore these effects in more detail in the future by
performing analogous studies on more realistic gauge field ensembles.

Despite the fact that our present simulations of anomalous transport phenomena were
performed in a drastically simplified setup, our work provides an important step towards
a more quantitative theoretical understanding of the CME and associated phenomena in
high-energy heavy-ion collisions. Since the life time of the magnetic field in heavy-ion colli-
sions is short, it is important to understand the dynamics of anomalous transport during the
early time non-equilibrium phase. However, as we pointed out, the theoretical techniques
developed in this work can be used to the address open questions in this context within a
fully microscopic description of the early time dynamics. In the future it will be important
to extend these studies to include more realistic gauge configurations and a spacetime de-
pendent magnetic field in order to address important phenomenological issues. Besides the
applications to high-energy nuclear physics, the theoretical approach advocated in this study
has a large variety applications e.g. in the study of cold electroweak baryogenesis [241, 157],
strong field QED [237], or cold atomic gases [242]. In this context, the technical develop-
ments achieved in this work should also be valuable and we are looking forward to explore
further applications of our ideas.
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Chapter 4

Multi-particle correlations and
collectivity from an initial state
parton model

The following chapter is based off of

• K. Dusling, M. Mace, R. Venugopalan. Multiparticle collectivity from initial state
correlations in high energy proton-nucleus collisions. Phys. Rev. Lett. 120, 042002
(2018); arXiv:1705.00745 [hep-ph]. Copyright (2017) by the American Physical Society

• K. Dusling, M. Mace, R. Venugopalan. Parton model description of multiparticle az-
imuthal correlations in pA collisions. Phys. Rev. D 97, 016014 (2018); arXiv:1706.06260
[hep-ph]. Copyright (2017) by the American Physical Society

• K. Dusling, M. Mace, R. Venugopalan. What does the matter created in high multi-
plicity proton-nucleus collisions teach us about the 3-D structure of the proton? PoS
QCDEV2017 (2018) 039 (QCD Evolution 2017 Proceeding) arXiv:1801.09704 [hep-ph].
Copyright (2018) the authors

4.1 Introduction

A remarkable series of recent experiments at CERN’s Large Hadron Collider (LHC) and at
the Relativistic Heavy Ion Collider (RHIC) at BNL have demonstrated the existence of col-
lective multiparticle dynamics in proton-proton (p+p) and light-heavy ion (h+A) collisions.
Collectivity is represented by the behavior of n-th Fourier moments of the cumulants cn {m}

of m-particle (m ≥ 4) azimuthal angular anisotropy correlations; it is observed that corre-
sponding real valued m-th roots of cn {m}, the anisotropy coefficients vn {m}, have nearly
identical values for high multiplicity events. These results are similar to those obtained in
peripherally overlapping collisions of heavy nuclei and even exhibit some of the systematics
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observed in fully overlapping central heavy-ion collisions. The collective dynamics of the
latter is well described by sophisticated hydrodynamic models which presume the creation
of a thermalized strongly interacting Quark-Gluon Plasma (QGP).

In this chapter, we demonstrated that a simple initial state parton model gives rise
to many of the features of multiparticle azimuthal correlations observed experimentally in
small collision systems at both RHIC at BNL and the LHC at CERN. In this model, collinear
quarks from the projectile scatter coherently off color sources of the size of the inverse of the
saturation scale Qs in the nuclear target; the scattered quarks are found to be collimated in
their relative azimuthal angles. We observed crucially that one obtains a negative value for
c2{4}, the four-particle azimuthal anisotropy cumulant. This results in a positive definite
four-particle Fourier coefficient v2{4}. We demonstrated further, in a simpler Abelian version
of our model, that one obtains the ordering of m-particle second Fourier harmonics v2{2} >
v2{4} ≈ v2{6} ≈ v2{8}. Both of these features were previously believed to be unique signatures
of collectivity arising from the hydrodynamic flow of quark-gluon matter. Not least, we
demonstrated that so-called symmetric cumulants (mixed four-particle cumulants of different
Fourier harmonics) computed in this parton model display the same qualitative features as
experimental measurements of symmetric cumulants. We note that symmetric cumulants
were designed to probe correlations and fluctuations arising from the hydrodynamic response
to different harmonics of the azimuthal structure of the initial geometry.

While the hydrodynamic description of the flow of quark-gluon matter is likely valid in
the larger, more central, collisions of heavy-ions (AA), the applicability of this description to
more peripheral AA collisions, and to pA and proton-proton (pp) collisions, is less clear [111,
112]. The results of this chapter are therefore a strong hint that the stated measures of
hydrodynamic collectivity are not robust in their own right without further corroboration
from other distinct measures of collectivity. An example of the latter is the strong jet
quenching that is seen in central heavy-ion collisions at RHIC and the LHC [262, 263, 264,
265]. In contrast, jet quenching is either small or absent in peripheral AA collisions and in
pA collisions [262, 114, 266].

We further elaborate on this parton model description, which itself is an extension pre-
vious work on two-particle azimuthal correlations discussed in [267, 268]. A novel feature
is the development of a general algorithm (based on the framework in [269]) to compute
expectation values of multi-dipole correlators. These objects encode the physics of multiple
eikonal scattering of quarks on a colored target. In particular, the dipole operator is the trace
over the product of a lightlike Wilson line appearing in the quark production amplitude at a
given transverse position, with its conjugate transpose appearing in the complex-conjugate
amplitude at a different spatial location, normalized by the number of colors Nc. We will
present a systematic study of azimuthal cumulants and Fourier harmonics as a function of
the target saturation scale Qs and the transverse momentum. Additionally, we will perform
a systematic study of the Nc dependence of observables. In particular, we will point to
key similarities and differences between the non-Abelian and Abelian versions of the model.
We will also make predictions of yet to be measured symmetric cumulants for higher order
Fourier harmonics.

Expectation values over the dipole correlators are computed in the McLerran-Venugopalan
(MV) model [49, 48]. This model includes coherent multiple scattering of the quarks in the
projectile off the nuclear target. If we include at most two scatterings of the quarks, cor-
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responding to the expansion of the Wilson lines to lowest nontrivial order, the expectation
values correspond to the Glasma graph approximation. This approximation is applicable for
p⊥ > Qs. A model including quantum evolution of the Glasma graphs in the Color Glass
Condensate (CGC) framework [46, 9] was previously applied to successfully describe key
features of azimuthal correlations for p⊥ ≥ Qs [83, 270, 84, 85, 86, 87, 88]. We show that the
Glasma graph correlators only produce positive values of the four-particle cumulant c2{4}
and therefore do not correspond to a real v2{4}. This result demonstrates that coherent mul-
tiple scattering, which is significant for p⊥ ≤ Qs, is an essential ingredient for the collectivity
seen in our initial state framework.

The organization of this chapter is as follow. We begin with the setup of our model in
Sec. 4.2. In Sec. 4.3, we discuss the algorithm for the computation of multi-dipole correlators.
Results of our computations are presented in Sec. 4.4. In Sec. 4.5, we discuss the dependence
of these results on the relative separations of the quarks in the projectile, on the number of
color domains for varying p⊥ windows and on the number of colorsNc. We contrast our results
to those in the Glasma graph approximation. We briefly discuss the rapidity dependence on
correlations in our model. In Sec. 4.6, we conclude and discuss possible future directions of
research. Details of the Glasma graph computations are presented in the Appendix.

4.2 Eikonal quark scattering from a nuclear target

We will discuss in this section a simple parton model description of proton-nucleus collisions.
The incoming projectile consists of a collection of independent, nearly collinear, quarks that
scatter off a dense nuclear target. Spatial correlations within the classical field of the nucleus
imprint themselves on the quarks as they scatter, resulting in nontrivial momentum space
correlations between the originally uncorrelated quarks. These include correlations in their
relative azimuthal angles.

We begin by considering the scattering of a fermion off a classical background field in the
high energy limit [271, 272]. The forward scattering amplitude for a fixed background field
A− can be expressed as [273]

⟨q(q)out∣q(p)in⟩A− = ∫ d2x⊥ [U(x⊥) − 1] ei(q−p)⋅x⊥ ∼M(p, q) , (4.1)

where

U(x⊥) = Pexp( − ig∫ dz+Aa−(x⊥, z
+) ta) (4.2)

is the Wilson line in the fundamental representation at a transverse position x⊥ and P denotes
path ordering in the lightcone variable x+. The −1 in Eq. (4.1) removes the “no scattering”
contribution wherein a quark passes through the target nucleus without having its color
rotated by an Eikonal phase. As the incoming partons all have transverse momentum of
order ΛQCD, and we are interested in ∣p∣ ≫ ΛQCD, we will ignore this contribution in what
follows.

The transverse spatial distribution of collinear quarks with transverse momenta k in the
projectile is represented by the Wigner function Wq(b,k) [267, 268]. The single inclusive
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distribution within this model can be expressed as

⟨
dN

d2p
⟩ =

1

4πBp
∫ d2r∫ d2b∫

d2k

(2π)2
Wq(b,k)e

i(p−k)⋅r ⟨D (b +
r

2
,b −

r

2
)⟩

(4.3)

where the expectation value denotes an average over fields A− in the target, as for instance
given by the MV model. For simplicity, we assume the Wigner function has the Gaussian
form

Wq(b,k) =
1

π2
e−∣b∣

2/Bpe−∣k∣
2Bp , (4.4)

where both the transverse momentum and spatial location of the quarks is determined by a
single nonperturbative scale Bp. Unless otherwise mentioned, we will fix Bp = 4 GeV−2 [274],
obtained from dipole model fits to HERA deep inelastic scattering data. We will discuss
later how our results are affected by variations in the value of Bp.

In Eq. (4.6), the function

D(x, y) =
1

Nc

Tr [U(x)U †(y)] (4.5)

denotes the dipole operator. This operator encodes all orders in multiple gluon exchanges,
as we will explicitly see in the calculations in Sec. 4.3. Performing the integration over the
incoming quark momenta k, Eq. (4.6) can be simplified to read,

⟨
dN

d2p
⟩ =

1

4π3Bp
∫ d2b∫ d2r e−∣b∣

2/Bpe−∣r∣
2/4Bp eip⋅r⟨D (b +

r

2
,b −

r

2
)⟩ .

(4.6)

The above framework can be extended to multiparticle production. For m incoming
quarks in the projectile the m-particle inclusive spectrum can be expressed as

⟨
dmN

d2p1⋯d2pm

⟩ ≡ ⟨
dN

d2p1

⋯
dN

d2pm

⟩ , (4.7)

where the expectation value denotes an average over classical configurations of the target in
a single event and over all events. Since each of the single-particle distributions inside the
average here is a gauge-dependent functional of the classical field, we caution the reader that
these distributions are qualitatively different from the gauge invariant single-particle distri-
butions employed in hydrodynamic computations. No such simple product of gauge invariant
distributions can be written in our case; indeed, as discussed at length in the Appendix, the
Feynman diagrams corresponding to Eq. (4.7) are quantum interference diagrams.

On the other hand, the quarks comprising the projectile are uncorrelated, with the m-
quark Wigner function of the projectile factorizing into a product of single-quark Wigner
functions,

W (b1,k1, ...,bm,km) =Wq(b1,k1)⋯⋯Wq(bm,km) . (4.8)
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Diagrammatically, this can be represented, as shown in Fig. 4.1, as the multiple scattering
between different quarks in the amplitude and complex conjugate amplitude and the target
nucleus. In the strict dilute-dense limit in which we work, these Wigner functions are gauge
invariant distributions of which the product form is assumed to survive color averaging.
From Eq. (4.7) and Eq. (4.8), we arrive at the following compact form for the m-particle
inclusive spectra:

⟨
dmN

d2p1⋯d2pm

⟩ =
1

(4π3Bp)
m

m

∏
i=1
∫ d2bi∫ d2ri e

−∣bi∣2/Bpe−∣ri∣
2/4Bpeipi⋅ri

⋅ ⟨
m

∏
j=1

D (bj +
rj

2
,bj −

rj

2
)⟩ . (4.9)

Even though the above expression has a factorized form, it is highly nontrivial. Multi-
particle correlations are generated via the expectation value over the classical fields of the
target. A primary focus of this work will be computing the correlation between four par-
ticles. In this case, the expectation value is over a product of four-dipole operators, each
of which, as noted, is a trace of two lightlike Wilson lines. The resulting expectation value
is a function of eight transverse coordinates: four coordinates in the amplitude and four
in the complex-conjugate amplitude. This expectation value will be evaluated without ap-
proximation in the MV model. We will see that large Nc approximations and perturbative
expansions (such as the Glasma graph approximation) to such correlators are insufficient to
capture the systematics of pA data.

x4

x3

x2

x1

... ... ...
x̄4

x̄3

x̄2

x̄1

... ... ...A−

Figure 4.1: Diagrammatic representation of gluon exchanges between quarks in the amplitude
(left) and complex-conjugate amplitude (right) and the target nucleus. The light-gray gluons
show possible exchanges between quarks that would break the factorization used in Eq. (4.8).
Correlations such as these might be generated via quantum evolution of the projectile and
are not included in this work. All allowed gluon exchanges between the quarks and the target
are fully resummed.

A shortcoming of our model is the oversimplified nature of the projectile. At high ener-
gies, gluon radiation dominates the small-x component of the proton’s wavefunction. These
high parton densities become apparent when Qs,T /pT ≳ 1; saturation model fits to HERA
data conservatively suggest that these effects become non-negligible around x = 0.01 [275].
However, depending on the transverse momentum range studied, the qualitative features we
observe could persist to smaller values of x. Furthermore, as the rapidity separation between
quarks becomes larger than ∆y ≳ 1/αS, quantum corrections will result in a decorrelation
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between partons. A more quantitative discussion of the rapidity dependence is discussed in
Sec. 4.5.5.

Quantum evolution will clearly break the factorized form of the Wigner function used in
Eq. (4.8). Furthermore, since gluons would dominate the scattering process, their interac-
tions with the target would be represented as adjoint Wilson lines. Multiparticle production,
in this dense-dense limit, has been addressed in previous work [276, 277, 61, 62, 81, 278].
Multiparticle distributions can be obtained by solving the classical Yang-Mills equations in
the presence of lightlike color sources corresponding to the projectile and the target. These
source densities are each drawn from functional distributions of color charges, the evolution
with energy of which is described by the JIMWLK equations [279, 47]. However, due to
the numerical complexity of the simulations, this has been restricted thus far to two-particle
correlations [61, 62]. The success of our simple model in explaining many of the collective
signatures seen in light–heavy-ion collisions should stimulate further development of classical
Yang-Mills simulations.

One may note that Eq. (4.9) has the structure of an expectation value of a product of
functions. If one interpreted these functions as “single-particle” distributions the form of
Eq. (4.9) would be markedly similar to a hydrodynamic framework [280]. One may then
conjecture that the results we show for v2{4} are simply a consequence of the functional
form of Eq. (4.9). This turns out not to be the case. In our discussion of coherent multiple
scattering versus Glasma graphs, we will observe that, while both can be expressed in single-
particle product form, one obtains negative four-particle azimuthal cumulants in the former
case and positive valued cumulants in the latter.

4.3 Expectation values of multi-dipole correlators in

the MV model

In this section, we will compute the expectation value of four dipole operators in the MV
model [49, 48] of a nucleus at high energies. Although we will only make use of dipole
operators, the results also generate all allowed expectation values of eight Wilson lines at no
additional computational cost. The algorithm presented here to compute expectation values
of lightlike Wilson line correlators can in principle be extended to higher-point functions.

In the MV model, classical gauge fields are described by solutions of the classical Yang-
Mills equations,

[Dµ, F
µν] = δν−ρ(x, x+) , (4.10)

where ρ denotes the classical color charge density in the nucleus. It is determined from the
random Gaussian distribution satisfying

⟨ρa(x⊥, x
+)ρb(y⊥, y

+)⟩ = δabδ(x
+ − y+)δ(2)(x⊥ − y⊥)µ

2(x+) , (4.11)

where µ2 is the squared color charge density per unit area. The above two-point function
can also be recast in terms of the gauge fields A−

a using

A−
a(x⊥, x

+) = g∫ d2z⊥G(x⊥ − z⊥)ρa(z⊥, x
+), G(x⊥) = ∫

d2k⊥
(2π)2

eik⊥⋅x⊥

∣k⊥∣2
,

(4.12)
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where G(x⊥) is the free gluon propagator in two dimensions [148]. One then obtains,

g2⟨A−
a(x⊥, x

+)A−
b (y⊥, y

+) = g4µ2(x+)δ(x+ − y+)δab∫ d2z⊥G(x⊥ − z⊥)G(y⊥ − z⊥)

≡ δ(x+ − y+)δabL(x⊥,y⊥) . (4.13)

The integral over the two-dimensional propagator is formally divergent and must be regulated
at the nonperturbative scale ΛQCD with the result

L(x⊥,y⊥) = (g2µ)2
∫ d2z⊥G(x⊥ − z⊥)G(x⊥ − y⊥)

∼ −
(g2µ)2

16π
∣x⊥ − y⊥∣

2 log(
1

∣x⊥ − y⊥∣ΛQCD

) . (4.14)

Expectation values of multiple dipoles can be computed by expanding the path ordered
exponential within the Wilson line to second order in the gauge field. All possible pair-
wise contractions of the gauge fields are evaluated using Eq. (4.13). The result can be
re-exponentied resulting in an expression valid to all orders in the gauge field [281, 282].
There is also a formally equivalent graphical method [269, 283], which we will refer to when
helpful.

When expanding out the path ordered exponential in the Wilson line, each gauge field
represents a single gluon exchange with the target. Each ⟨AA⟩ contraction is therefore
equivalent to considering two gluon exchanges between two quarks (represented as Wilson
lines) and the target nucleus. Gluon exchanges can occur twice on the same quark, or on
different quarks, and can also act on anti-quarks in the conjugate amplitude.

Following [269], we will denote as T contributions arising from two gluon exchanges with
the same quark and N as two-gluon exchange among different quarks. Since exchanges
between the same Wilson line in T are color singlets, these contributions can be considered
separately from the N contributions. The final result for the expectation value of m-dipole
operators can be expressed as a product of the two contributions,

⟨D⋯D⟩ = T N . (4.15)

4.3.1 Tadpole contribution

Gluon exchanges between the same Wilson line comprise the tadpole contribution T . We
take as our starting point eight Wilson lines having transverse positions x1, x̄1, . . . ,x4, x̄4,
where the x positions refer to quarks and the x̄ positions refer to anti-quarks. These dipoles
must be connected in such a way to preserve the flow of color. Namely, quarks can only be
connected to anti-quarks and vice versa. Without loss in generality, we connect at x+ = −∞
quarks at xi with anti-quarks at x̄i, as shown in Fig. 4.2.

This allows us to unambiguously define what we mean as a four-dipole configuration for
the given positionsa, as shown in Fig. 4.4a. However, we can consider the x+ = +∞ ends to
be initially open ended. To evaluate the tadpole contribution, we draw a gluon connecting

aPhysically however these positions are completely arbitrary.
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x1

x̄1

x2

x̄2

x3

x̄3

x4

x̄4

Figure 4.2: Eight fundamental Wilson lines, pairwise connected. Coordinates denote trans-
verse positions.

Figure 4.3: The Fierz identity, Eq. (4.16).

at two arbitrary x+ points on the same Wilson line of Fig. 4.2. We then invoke the Fierz
identity,

taijt
a
kl =

1

2
δilδjk −

1

2Nc

δijδkl, (4.16)

which is given graphically by Fig. 4.3.

Performing this Fierz-ing, we see that the first term gives us a closed loop, which just is
the trace of the identity matrix. This gives a factor of Nc and the dipole again. The second
term is just the original dipole. The result is then the original dipole multiplied with the

Casimir factor CF =
N2
c −1

2Nc
.

For the rest of the result, we must calculate pair-wise contractions of the gauge field
A−
a . As noted, for the MV model, these satisfy Eq. (4.13). Every gluon exchange between

the same (anti)-quark (same transverse position Wilson line) results in a factor of −CF2 Lxixi ,
where L was defined in Eq. (4.14), and the 1/2 is on account of the fact that the two ends of
the correlator are ordered in x+ because they belong to the same Wilson line. The negative
sign is from connecting a (anti)-quark with a (anti)-quark.

Summing n such exchanges to the Wilson lines, the tadpole contribution can be expressed
as

T = exp(−
CF
2

4

∑
i=1

(Lxixi +Lx̄ix̄i)), (4.17)

where we now denote the transverse position arguments as subscripts for readability and
differentiate between quarks in the amplitude (xi) and anti-quarks in the complex-conjugate
amplitude with an over-bar (x̄i). This tadpole term is a color singlet and commutes with
the terms we will derive next.
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(a) Four dipoles.
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(b) Two dipoles and
a quadrupole.
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(c) Two
quadrupoles.
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(d) One dipole and
a sextupole.
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x3

x̄3

x4

x̄4

(e) An octupole.

Figure 4.4: The five different topologies possible for eight Wilson lines. All possible permu-
tations with respect to the given transverse coordinates are possible.

4.3.2 Gluon exchange contribution

We shall now consider gluon exchanges between different Wilson lines. Our starting point is
again the configuration shown in Fig. 4.2. Closing the ends of the dipoles while preserving
the color flow, we find that there are five distinct topologies. Using Fierz ordering as we did
previously for the tadpole contribution, a gluon exchange between different Wilson lines in
one topology can transform it into a different topology.

We now show how one obtains the five distinct topologies shown in Fig. 4.4. As a
concrete example, we start with the four closed dipoles in Fig. 4.4a. Consider a gluon
exchange between x̄3 and x4. From the two terms that result from Fierz ordering, as shown
in Fig. 4.3, the first term gives two dipoles and a quadrupole, as depicted in Fig. 4.4b, with a
factor of 1

2 . A quadrupole, as depicted, is a distinct topological configuration corresponding
to the trace over the product of Wilson lines at two distinct transverse spatial positions in the
amplitude and at two such positions in the complex-conjugate amplitude. The second term
from Fierz-ing just returns the original four-dipole configuration shown in Fig. 4.4a, but now
with the Fierz factor 1

2Nc
. Now taking this dipole-dipole-quadrupole configuration, consider

further an exchange between x̄1 and x2. This creates a quadrupole-quadrupole topology from
the first term in the Fierz-ing, as depicted in Fig. 4.4c, and likewise the structure Fig. 4.4b
from the second Fierz term, both terms with the appropriate Fierz prefactors.

If instead we had started with the dipole-dipole-quadrupole configuration and considered
a gluon exchange between x̄2 and x3, the first Fierz term would have resulted in a dipole-
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sextupole configuration, as depicted in Fig. 4.4d. A sextupole, as depicted in Fig. 4.4d,
corresponds to a trace over the product of Wilson lines at three spatial positions in the
amplitude and three in the complex-conjugate amplitude. An exchange between x̄1 and
x2 in this dipole-sextupole topology results in an octupole (trace of eight Wilson lines–
four in the amplitude and the other four in the complex-conjugate amplitude), depicted in
Fig. 4.4e, for the first Fierz term. The second term, as for the previous cases, gives back the
original configuration, the dipole-sextupole one, with the appropriate Fierz prefactor. Thus,
we see that multiple gluon exchanges continually generate, with each additional exchange,
transitions between five topologically distinct configurations: (a) four-dipole, (b) dipole-
dipole-quadrupole, (c) quadrupole-quadrupole, (d) dipole-sextupole, (e) octupole.

There is a transverse coordinate permutation degeneracy to these diagrams as well. The
four-dipole is the only topology without this permutation degeneracy. For the dipole-dipole-
quadrupole topology, there are (

4
2
) = 6 possible permutations to close the x+ = +∞ side of

the eight pairwise connected Wilson lines we introduced previously. Similarly, there are
1
2
(

4
2
) = 3 quadrupole-quadrupole permutations, 2(4

3
) = 8 dipole-sextupole permutations, and

3! = 6 octopole permutations. As a sanity check, since we have considered eight Wilson lines
connected pairwise at one end (x+ = −∞), the sum of these permutations degeneracies agrees
with the total 4! = 24 possible different contractions of the x+ = +∞ side, which is dictated
from the fact that quark (anti-quark) Wilson lines can only connect with anti-quark (quark)
Wilson lines.

It should be clear from our discussion that we have a closed system of 24 configurations
whereby each of these are transformed, through gluon exchanges and Fierz-ing, into other
configurations in this system. We can express the 24 possible configurations as elements of
a basis characterizing the four-dipole system. Starting with this initial condition, where all
other configurations are set to zero, one can construct a 24 by 24 transformation matrix M
that transforms one set of basis elements to another with each gluon exchange and subsequent
Fierz-ing. We can then deduce, either analytically [281, 282, 284] or diagramatically [269,
283], what factors (via Fierz) are picked up in going from a basis element α to basis element
β, which then define the elements Mαβ of the matrix.

To understand how one fills in the arrays of this matrix, consider a path ordered expo-
nential for the Wilson line

U(x⊥) = Pexp(ig∫
ξ

dz+A−(z+,x⊥)) ≃ V (x⊥)(1 + igA
−
a(ξ,x⊥)t

a + ...) , (4.18)

where we expanded out the last infinitesimal slice in rapidity, and V (x⊥) is a redefinition of
the original Wilson line excluding this last infinitesimal slice. Substituting this last expression
in the dipole operator, we obtain

⟨D(x⊥, x̄⊥)U⟩ =
1

Nc

⟨tr(U(x⊥)U
†(x̄⊥)⟩

= ⟨D(x⊥, x̄⊥)V ⟩ (4.19)

+ g2⟨A−
a(x⊥)A

−
b (x̄⊥)⟩

1

Nc

⟨tr (V (x⊥)t
atbV †(x̄⊥))⟩ .

Here we have made use of the locality in rapidity of correlators in the MV model.
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Using Eq. (4.13), we can express ⟨DU⟩ in the l.h.s in terms of ⟨DV ⟩ alone on the r.h.s..
Iterating this expression for each slice in rapidity, one obtains the exponentiated expression

⟨D(x⊥, x̄⊥)U⟩ = eCfL(x⊥,x̄⊥)⟨D(x⊥, x̄⊥)V ⟩ . (4.20)

While this is a simple example, an identical procedure can be followed for multiple dipoles, or
any higher order configuration, resulting from an initial four-dipole configuration. Another
example is the well-known two-dipole result [269, 283, 281, 282]. In this case, following the
procedure outlined above, it is straightforward to show that

⟨Dx1x̄1Dx2x̄2⟩U ≃ αx1x̄1x2x̄2⟨Dx1x̄1Dx2x̄2⟩V

+ βx1x̄2x2x̄1⟨Qx1x̄2x2x̄1⟩V (4.21)

where Q = Tr (V (x1)V †(x̄2)V (x2)V †(x̄1)) /Nc is the quadrupole configuration. Since the
only two configurations for two dipoles are the dipole-dipole and quadrupole, we can then
write this as a matrix equation:

(
⟨Dx1x̄1Dx2x̄2⟩

⟨Qx1x̄2x2x̄1⟩
)
U

= (
αx1x̄1x2x̄2 βx1x̄2x2x̄1

βx1x̄1x2x̄2 αx1x̄2x2x̄1

)
U

(
⟨Dx1x̄1Dx2x̄2⟩

⟨Qx1x̄2x2x̄1⟩
)
V

(4.22)

where α and β are simple functions of L(x⊥,y⊥) given in Ref. [269].
For a further example, if we consider four dipoles, then it is only possible via one gluon

exchange to get to the six possible dipole-dipole-quadrupole configurations or stay in the
four-dipole configuration. One obtains

⟨Dx1x̄1Dx2x̄2Dx3x̄3Dx4x̄4⟩U ≃ αx1x̄1x2x̄2x3x̄3x4x̄4⟨Dx1x̄1Dx2x̄2Dx3x̄3Dx4x̄4⟩V

+ βx1x̄2x2x̄1⟨Qx1x̄2x2x̄1Dx3x̄3Dx4x̄4⟩V

+ βx1x̄2x2x̄1⟨Qx1x̄3x3x̄1Dx2x̄2Dx4x̄4⟩V

+ βx1x̄4x4x̄1⟨Qx1x̄4x4x̄1Dx2x̄2Dx3x̄3⟩V

+ βx2x̄3x3x̄2⟨Qx2x̄3x3x̄2Dx1x̄1Dx4x̄4⟩V

+ βx2x̄4x4x̄2⟨Qx2x̄4x4x̄2Dx1x̄1Dx3x̄3⟩V

+ βx3x̄4x4x̄3⟨Qx3x̄4x4x̄3Dx1x̄1Dx2x̄2⟩V . (4.23)

We can repeat this for all topologies to obtain a similar matrix as for the two-dipole case.
For a small number of dipoles, this procedure can be carried out efficiently by hand,

and the eigenvalues of the matrix can be even computed analytically. However for larger
numbers of dipoles, this becomes cumbersome. For example, for the four dipoles we have
been considering, we must compute 7! gluon exchanges for each of the 24 basis elements,
totaling 120,960 computations. Fortunately, since the algorithm suggested by our exercises
is quite straightforward, it is very tractable to determine the elements of the 24 by 24 matrix
and compute their eigenvalues on a computer. This work made extensive use of the GNU
Scientific Library [285] and the EXPOKIT software package [286]. The matrix is illustrated
schematically by Fig. 4.5; as it indicates, the elements of the matrix are relatively sparse
but must nevertheless be diagonalized numerically. Our algorithm can be generalized to a
larger number of dipoles of more complex topologies. It is therefore potentially useful for
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〈Dww̄Dxx̄DyȳDzz̄〉
〈Qww̄xx̄Dyz̄Dzȳ〉
〈Qww̄xȳDyx̄Dzz̄〉
〈Qww̄xȳDyz̄Dzx̄〉
〈Qww̄xz̄Dyx̄Dzȳ〉
〈Qww̄xz̄DyȳDzx̄〉
〈Qwx̄xw̄DyȳDzz̄〉
〈Qwx̄xw̄Qyz̄zȳ〉
〈Qwx̄xȳQyw̄zz̄〉
〈Qwx̄xȳQyz̄zw̄〉
〈Swx̄xz̄yw̄Dzȳ〉
〈Swx̄xz̄yȳDzw̄〉
〈Swȳxw̄yx̄Dzz̄〉
〈Swȳxw̄yz̄Dzx̄〉
〈Swȳxx̄yw̄Dzz̄〉
〈Swȳxx̄yz̄Dzw̄〉
〈Swȳxz̄yw̄Dzx̄〉
〈Swȳxz̄yx̄Dzw̄〉
〈Owz̄xw̄yx̄zȳ〉
〈Owz̄xw̄yȳzx̄〉
〈Owz̄xx̄yw̄zȳ〉
〈Owz̄xx̄yȳzw̄〉
〈Owz̄xȳyw̄zx̄〉
〈Owz̄xȳyx̄zw̄〉
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〈Dww̄Dxx̄DyȳDzz̄〉
〈Qww̄xx̄Dyz̄Dzȳ〉
〈Qww̄xȳDyx̄Dzz̄〉
〈Qww̄xȳDyz̄Dzx̄〉
〈Qww̄xz̄Dyx̄Dzȳ〉
〈Qww̄xz̄DyȳDzx̄〉
〈Qwx̄xw̄DyȳDzz̄〉
〈Qwx̄xw̄Qyz̄zȳ〉
〈Qwx̄xȳQyw̄zz̄〉
〈Qwx̄xȳQyz̄zw̄〉
〈Swx̄xz̄yw̄Dzȳ〉
〈Swx̄xz̄yȳDzw̄〉
〈Swȳxw̄yx̄Dzz̄〉
〈Swȳxw̄yz̄Dzx̄〉
〈Swȳxx̄yw̄Dzz̄〉
〈Swȳxx̄yz̄Dzw̄〉
〈Swȳxz̄yw̄Dzx̄〉
〈Swȳxz̄yx̄Dzw̄〉
〈Owz̄xw̄yx̄zȳ〉
〈Owz̄xw̄yȳzx̄〉
〈Owz̄xx̄yw̄zȳ〉
〈Owz̄xx̄yȳzw̄〉
〈Owz̄xȳyw̄zx̄〉
〈Owz̄xȳyx̄zw̄〉



V

Figure 4.5: The basis of configurations resulting for eight Wilson lines, pairwise connected,
resulting in dipoles, quadrupole, sextupoles, and octupoles. Coordinates denote transverse
positions.

computations of many-body final states in high energy QCD where n-tupoles of lightlike
Wilson lines are ubiquitous.

As a final remark on this matrix computation, we note that in the large Nc limit this
problem becomes more tractable [287, 288]. In Ref. [287], it was shown that for large Nc only
dipoles and quadrupoles contribute to high energy QCD processes. However the azimuthal
cumulants themselves vanish at large Nc, so in order to compute these quantities a finite Nc

calculation is necessary.

4.3.3 Result for product of four-dipole correlators

Now that we have explained how to calculate the matrix for one gluon exchange at a single
slice in rapidity, we can compute how the basis vector space of configurations evolves after
an infinite number of gluon exchanges. More generally, after n gluon exchanges, we have the
vector

N⃗n = anN⃗
(a) + bnN⃗

(b) + ... + xnN⃗
(x) , (4.24)

where N⃗ (a) through N⃗ (x) refer to individual basis vectors in the 24-dimensional basis space.
This then evolves according to

N⃗n+1 = M N⃗n . (4.25)
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One can rewrite this expression as the matrix equation

⎛
⎜
⎜
⎜
⎝

an+1

bn+1

...
xn+1

⎞
⎟
⎟
⎟
⎠

= M

⎛
⎜
⎜
⎜
⎝

an
bn
...
xn

⎞
⎟
⎟
⎟
⎠

. (4.26)

The setup of the computation thus far is general. However, as previously stated, we wish
to begin with an initial condition that is the closed four-dipole configuration. This is done
by setting the initial condition N⃗0 = N⃗ (a) (the four-dipole configuration). Since we know
how to compute additional gluon exchanges from Eq. (4.26), we need to multiply our initial
condition N⃗0 = N⃗

(a) by M n times. This is, however, just a compact way to write all possible
configurations with appropriate factors after n gluon exchanges from the starting point of
four closed dipoles. The result, after all orders in gluon exchanges, is simply

N⃗ =
∞
∑
n=0

1

n!
N⃗n =

∞
∑
n=0

1

n!
MnN⃗0 = e

MN⃗0 . (4.27)

Lastly, to compute the expectation value over the product of four-dipole operators, we need
to sum over each of the elements of the 24-dimensional column vector with the respective
Nc weights of each of the n-tupoles. The four-dipole configuration in this formulation has
weight unity. The dipole-dipole-quadrupole configuration comes with 1/Nc, both quadrupole-
quadrupole and dipole-sextupole configurations with 1/N2

c , and octupoles with 1/N3
c . The

sum over the 24-dimensional basis can then be written as the scalar product of the corre-
sponding row vector and the column vector N⃗ :

N = (1,1/Nc, ..,1/Nc,1/N
2
c , ...,1/N

2
c ,1/N

3
c , ...,1/N

3
c ) N⃗ . (4.28)

Here the ⋯ denote the different permutations of each of the five configurations in Fig. 4.4.
With this expression for N , the combined gluon exchange and tadpole contributions in
Eq. (4.17) can be written as

⟨DDDD⟩ = T N . (4.29)

As we noted, analytical expressions for these quantities are too cumbersome to compute.
However, with the procedure outlined, they can be computed numerically and utilized to
compute the four-particle correlation functions we shall discuss further in the next section.

4.3.4 Abelian limit

We will consider here the computation of the m-dipole expectation value in an Abelianized
version of the MV model. In the U(1) theory, the Wilson line again represents the multiple
scattering of a charged particle off a classical field [271]:

U(x⊥) = P exp(−ie∫ dz+A−(x⊥, z
+)) . (4.30)

However, here the Wilson line is a scalar valued function, not an SU(Nc) valued matrix
as in the non-Abelian case; this simplifies computations enormously. Expectation values of
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multiple Wilson lines can be evaluated analogously to the non-Abelian case by first expand-
ing each exponential to second order in the gauge field, followed by replacing all pairwise
contractions of the gauge field with the Gaussian expectation value, as in Eq. (4.13):

e2⟨A−(x⊥, x
+)A−(y⊥, y

+)⟩ = e4µ2δ(x+ − y+)∫ d2z⊥G(x⊥ − z⊥)G(y⊥ − z⊥)

≡ δ(x+ − y+)L(x⊥,y⊥) . (4.31)

The dipole expectation value is then

⟨D(x⊥, x̄⊥)⟩ = ⟨U(x⊥)U
∗(x̄⊥)⟩ = exp [L(x⊥, x̄⊥)] , (4.32)

and the correlator of two dipoles can be expressed as

⟨D(x⊥, x̄⊥)D(y⊥, ȳ⊥)⟩ = ⟨U(x⊥)U
∗(x̄⊥)U(y⊥)U

∗(ȳ⊥)⟩ (4.33)

= exp (Lx,x̄ +Ly,ȳ +Lx,ȳ +Ly,x̄ −Lx,y −Lx̄,ȳ) .

Similarly, for four dipoles, one obtains

⟨D(x⊥, x̄⊥)D(y⊥, ȳ⊥)D(z⊥, z̄⊥)D(w⊥, w̄⊥)⟩

= exp(Lx,x̄ +Ly,ȳ +Lz,z̄ +Lw,w̄ +Lx,ȳ +Lx,z̄ +Lx,w̄ +Ly,x̄

+Ly,z̄ +Ly,w̄ +Lz,x̄ +Lz,ȳ +Lz,w̄ +Lw,x̄ +Lw,ȳ +Lw,z̄

−Lx,y −Lx,z −Lx,w −Ly,z −Ly,w −Lz,w −Lx̄,ȳ −Lx̄,z̄

−Lx̄,w̄ −Lȳ,z̄ −Lȳ,w̄ −Lz̄,w̄) .

Higher-point correlators can be found similarly by summing over all combinations of two-
point functions; a negative sign is introduced for combinations of two quarks or two anti-
quarks.

4.4 Results

We will now discuss the calculation of m-particle production using the expression in Eq. (4.9).
The inputs into this expression include the parameter Bp representing the transverse area
of the projectile and the function L(x⊥,y⊥) that represents the correlation of gauge field
configurations arising from a Gaussian distribution of color sources. In the MV model, the
quantity L(x⊥,y⊥) is related to the expectation value of the dipole operator through the
expression

⟨D(x⊥,y⊥)⟩ = e
CFL(x⊥,y⊥) . (4.34)

In this work, we will use the functional form

L(x⊥,y⊥) = −
(g2µ)2

16π
∣x⊥ − y⊥∣

2 log(
1

∣x⊥ − y⊥∣Λ
+ e) . (4.35)

For the infrared cutoff in the model, we will use the value Λ = 0.241 GeV. This value is
obtained from parametrizations of the dipole amplitude used in dipole model computations
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of structure functions that are fit to the HERA deep inelastic scattering ep data [289, 290].
We have checked that the results are qualitatively unchanged within a physically reasonable
range of values of Λ.

Following Ref. [290], a model independent saturation scale is defined through the relation

⟨D (∣x⊥ − y⊥∣
2 = 2/Q2

s)⟩ = e
−1/2 . (4.36)

For the remainder of this work, we will specify values of Q2
s rather than (g2µ)2. We should

point out that the mapping between (g2µ)2 and Q2
s contains an explicit dependence on CF ,

as is transparent from Eq. (4.34). When we compare results at various Nc, this scaling with
CF is taken into account. The exception is the U(1) case, where we take CF = 4/3 when
relating Q2

s to (g2µ)2.
We stress that the saturation scale Qs here is that of the target nucleus. There is no

analogous saturation scale of the projectile in the model we are considering. This is a conse-
quence of the simplicity of our treatment of the projectile’s constituents, which are comprised
of nearly collinear uncorrelated quarks alone. The corresponding average multiplicity per in-
teraction is unity. This can be seen by explicit integration of Eq. (4.9) and can be contrasted
with the expression for the multiplicity found in k⊥-factorization [79]

Nmult ∼ Q
2
s,pS⊥ log(

Q2
s,T

Q2
s,p

) , (4.37)

where Qs,p and Qs,T are the saturation scales of the projectile and target respectively. The
transverse overlap area S⊥ can be identified with the projectile area Bp in our model. The
absence of a projectile saturation momentum is the biggest shortcoming of the above frame-
work. The equivalent scale controlling the momenta of the incoming quarks is 1/Bp, which is
held fixed. While the fact that our model and the experimental data seem to both be inde-
pendent of the multiplicity (at least qualitatively) may be suggestive of a common physical
origin, it is far from clear that this will hold for a more realistic model of the projectile.

In what follows, we will primarily plot quantities as a function of the target saturation
scale Qs. The target saturation scale is a function of both Bjorken x and the impact pa-
rameter. As discussed above, the multiplicity is a logarithmic function of Qs. Instead, Qs

is better thought of as a proxy for the energy of the collision. In the CGC picture of high
energy QCD, Qs grows with the center-of-mass energy.

As a final remark, we stress that we only expect to make a qualitative comparison with
data. In addition to the shortcomings of the model addressed above, our final state distri-
butions are for quarks and not for hadrons. Any correlations computed in this model will
be reduced through a variety of effects, such as fragmentation, and quantum evolution of
parton distributions. They therefore provide an upper limit for azimuthal correlations in
initial state frameworks.

4.4.1 Multiparticle azimuthal cumulants and harmonics

Multiparticle correlations carry a wealth of information on the dynamics of the colliding
system. For reviews, see for instance, Refs. [291, 292]. Azimuthal correlations, in particular,
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are sensitive measures of collective dynamics in heavy-ion collisions. For systems undergoing
collective flow, one can define the nth-Fourier harmonic coefficients

vn = ⟨ein(φ−ΨR)⟩ , (4.38)

where φ is the azimuthal angle of a produced particle and ΨR is the angle of a reaction
plane determined by the collective geometry of particles produced in the collision. The
determination of a suitable reaction plane may be sensitive to a variety of so-called non-flow
contributions such as resonance decays, to give one example. The effect of these non-flow
correlations can be minimized using cumulant method [293], which is now widely used in
experimental studies of multiparticle correlations. Two- and four-particle cumulants are
defined as

cn{2} = ⟨ein(φ1−φ2)⟩ (4.39)

cn{4} = ⟨ein(φ1+φ2−φ3−φ4)⟩ − 2⟨ein(φ1−φ2)⟩2 , (4.40)

where the average ⟨⋯⟩ in cn{m} is the average of all possible combinations of m particles in
an event, followed by an averaging over all events [293, 294, 295].

The cumulants above can be expressed in terms of the m-particle inclusive distribution
by first defining a quantity κn{m} as

κn{m} ≡ ∫

m

∏
i=1

d2pi e
in(φ1+⋯+φm/2−1−φm/2−⋯−φm) ⟨

dmN

∏
m
i=1 d

2pi

⟩ , (4.41)

corresponding to the nth harmonic of the m-particle distribution. The averages can be
written as a ratio of the nth azimuthal angle moment of the m-particle inclusive distribution
normalized by the zeroth moment (the m-particle inclusive multiplicity):

⟨ein(φ1+⋯+φm/2−1−φm/2−⋯φm)⟩ =
κn{m}

κ0{m}
. (4.42)

Fourier coefficients are then defined from the above cumulants as

vn{2} = (cn{2})1/2 , (4.43)

vn{4} = (−cn{4})1/4 . (4.44)

The motivation for the above definitions becomes transparent under the assumption
that the m-particle distribution factorizes into a product of single-inclusive distributions
correlated with each other only through the event plane angle. This is indeed what one
would expect if the system undergoes hydrodynamic flow. In such a framework, the two-
particle Fourier harmonic vn{2} would, as above, be the square root of the corresponding
two-particle azimuthal angle cumulant, the four-particle Fourier harmonic vn{4}, the fourth
root of the four particle azimuthal angle cumulant, and so on. The negative sign in the latter
case is appropriate because one anticipates intrinsic four-particle angular correlations to be
subdominant relative to the square of the two-particle cumulant in Eq. (4.40). While the
observation of m-particle Fourier harmonics is suggestive of some form of collective behavior,
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Figure 4.6: Integrated v2{2} as a function of the maximum integrated momenta, pmax
⊥ , for

various Fourier harmonic n, as a function of Q2
s.
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Figure 4.7: c2{4} integrated to pmax⊥ = 2,3 GeV as a function of Q2
s.

we will argue instead that it can result from any physical mechanism where higher cumulants
are suppressed relative to the mean and variance of the distribution.

In Fig. 4.6, we show vn{2} as a function of Q2
s for Fourier harmonics n = 2,3,4,5. For

each harmonic, we studied the sensitivity of the result for multiple values of the maximum
integrated transverse momentum (pmax

⊥ ). We observe that even for pmax
⊥ = 2 GeV, the result

is insensitive to the high momentum cutoff. Due to the small x evolution of partons in the
target, its saturation momentum Qs will increase with the increasing center-of-mass energy
of the collision. Since this is the only energy dependent variable in our framework, our result
indicates that the vn{2} are only weakly dependent on the energy. We also observe that the
vn{2} have a clear hierarchy with n, similar to what is seen in experiment [296].

The four-particle cumulant c2{4} is shown as a function of Q2
s in Fig. 4.7. We clearly

see that by Q2
s = 0.3 GeV2 that there is a change in the sign of the signal, from positive

to negative values, resulting in a real v2{4} = (−c2{4})1/4; this is plotted in Fig. 4.8. The
magnitude of the signal only weakly depends on the maximum integrated momentum pmax

⊥ .
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The relatively weak variation in the signal above Q2
s ∼ 1 GeV2 is in qualitative agreement

with the experimental findings on the center-of-mass energy dependence of the four-particle
cumulant [297, 298, 295, 299, 300].

As we noted previously, a positive definite value for v2{4} is natural in hydrodynamic
models. However, we know of only two 3+1-dimensional numerical hydrodynamic compu-
tations of v2{4} in pA collisions [301, 302]. In the case of Ref. [302], while some of the
systematics of pA collisions is reproduced, the model is unable to reproduce similar event-
by-event systematics of flow in AA collisions.

There also exist qualitative arguments for positive definite v2{4} [294] in an initial state
“color domain” model [303, 304, 305, 306, 307]. Though this model provides an intuitive
picture of how multiparticle azimuthal cumulants may be generated in an initial state frame-
work, it is unclear how the oriented background color-electric fields are created from first
principles [268].

In Fig. 4.9, we plot the ratio of the four- to two-particle integrated v2{m}. For both
values of pmax⊥ , this ratio rises with Q2

s and saturates above Q2
s ∼ 1 GeV2. The values obtained
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Figure 4.10: The Fourier harmonics v2{2} and v2{4} as a function of p⊥ for two values of Q2
s.

v2{4}/v2{2} ∼ 0.5–0.6 are remarkably close to those measured by the CMS Collaboration that
shows this quantity increasing with centrality from ∼ 0.675 to 0.775 [297, 308]. A detailed
study of this ratio, and other such ratios, and their centrality dependence, in various models
of initial state spatial eccentricities, can be found in Ref. [308].

We now study the multiparticle cumulants differentially in transverse momentum. If we
keep the transverse momentum of one particle in Eq. (4.41) fixed and integrate over the
momenta of the remaining m − 1 particles, the two- and four-particle differential Fourier
harmonics are defined as [297]

v2{2}(p⊥) =
d2{2}(p⊥)

(c2{2})
1/2 , v2{4}(p⊥) =

−d2{4}(p⊥)

(−c2{4})
3/4 , (4.45)

where dn{m} are the differential analogs of cn{m}. Figure 4.10 shows v2{2} (left) and v2{4}
(right) as a function of p⊥ for two representative values of the saturation scale Q2

s = 1 and
2 GeV2. Note that while the results are differential in p⊥ for one of the particles the remaining
particles are integrated up to a pmax

⊥ = 3 GeV. We note that for Q2
s = 2 GeV2 our results

exhibit behavior similar to that seen in the experimental p-Pb data data [297, 309]. We
know of one other theory computation of v2{4}(p⊥) in small systems [310].

Event-by-event fluctuations of vn with vn′ for n ≠ n′ can be captured by symmetric
cumulants [311] defined as

SC(n,n′) = ⟨ei(nφ1+n′φ2−nφ3−n′φ4)⟩ − ⟨ein(φ1−φ3)⟩⟨ein
′(φ2−φ4)⟩ . (4.46)

These mixed harmonic angular expectation values are defined analogously to those in Eq. (4.41)
and Eq. (4.42). They were originally introduced in hydrodynamic frameworks as a measure
of the nonlinear response of the initial geometry of the system [311]. These have been studied
mainly in the context of heavy-ion collisions [312]. In these heavy-ion systems, the symmetric
cumulants describe how correlations between the initial moments of the eccentricities, which
are driven by the overlap geometry and thus the centrality of the collision, are carried to the
final state. An example of symmetric cumulants are the correlations between the v2 and v3

azimuthal harmonics, denoted by SC(2,3). From geometrical considerations, there should
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Figure 4.11: Four-particle symmetric cumulants defined in Eq. (4.46), as a function of Q2
s.

be an anti-correlation between the initial ellipticity and the triangularity. When converted to
correlations of final state momentum anisotropies, this results in a negative SC(2,3). Studies
of the symmetric cumulants SC(2,3) and SC(2,4) for heavy-ion collisions have been carried
out in hydrodynamic simulations [313, 314] and in a hadronic transport model [315].

However, in small systems, this picture should not hold. The initial eccentricities are
not believed to be strongly centrality driven, but instead are most likely in response to sub-
nucleonic fluctuations [316]. We will touch on the topic of sub-nucleon fluctuations in the next
section. In our model, we include sub-nucleon scale fluctuations in sampling the positions
of the quarks in the projectile given through our Gaussian Wigner function, Eq. (4.4). Our
results for SC(2,3) and SC(2,4) are shown in Fig. 4.11 as a function of Q2

s,T . We see
that SC(2,3) is negative by Qs,T = 1 GeV while SC(2,4) is positive for all Qs,T . This is in
qualitative agreement with the data [317]. Our results demonstrate clearly that such patterns
are not unique to an interpretation requiring hydrodynamic flow. Results from hydrodynamic
computations for these cumulants in light-heavy ion collisions are not yet available. In
Fig. 4.12, we show predictions for the behavior of SC(2,5), SC(3,4), and SC(3,5). Results
for these symmetric cumulants, for heavy-ion collisions alone, were shown at the Quark
Matter 2017 conference [318]. Our results for these cumulants agree qualitatively the results
presented. We are unaware of any other theory predictions for these cumulants in light-heavy
ion collisions. While not their designated purpose, symmetric cumulants in small systems
may be an effective way to access information on initial state sub-nucleon fluctuations.

It is also interesting to consider coherent multiple scattering in the Abelian limit of this
model; introduced in Sec. 4.3.4. In this case, the Wilson lines are not matrices in color
space, but simply path ordered exponentials [271]. The product of dipoles in Eq. (4.9) is
significantly simpler to compute (see Appendix G for explicit expressions), enabling one to
extract v2{6} and v2{8} from the corresponding cumulants [293, 295]. Our results, shown in
Fig. 4.13, demonstrate that v2{2} > v2{4} ≈ v2{6} ≈ v2{8}, as also seen in the LHC data on
multiparticle harmonics [295, 300].

The fact that this behavior is reproduced in a simple initial state model is a proof of
principle that it is not unique to interpretations of collectivity arising from the hydrodynamic
response of the system to the n-th moments of m particle spatial eccentricities [301, 302, 319,
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308]. For a recent review on hydrodynamic collectivity and relevant references, see [320].
Our results do not necessarily mean that an initial state interpretation of the data is favored.
We instead conclude that the vn{m} measurements alone are insufficient to unambiguously
distinguish between initial and final state approaches.

4.5 Detailed systematics of the results

4.5.1 Role of the projectile

It is expected that sub-nucleon scale fluctuations play an important role in small systems;
hydrodynamic computations including such fluctuations have been performed for pA colli-
sions [65]. Thus it is also interesting to ask what similarities our model bears to a constituent
quark model based picture. To mock up this effect, we introduce a hard distance cutoff (ei-
ther minimum or maximum) between all quarks in the amplitude and similarly between
all anti-quarks in the complex-conjugate amplitude. This is in addition to the Gaussian
sampling of the quark positions from the Wigner function introduced in Eq. (4.4).

The effect of such a cutoff on v2{2} is shown in Fig. 4.14. Starting with the standard
Wigner function in Eq. (4.4) as a reference, we see that by introducing a minimum distance
criteria (separating the quarks by at least a distance of dmin = Bp/8 or Bp/4) the correlations
decrease. This is to be expected because forcing the transverse positions of the quarks to be
farther away from each other ensures that they are less likely to interact with the same color
domain in the target. We would then expect, on the same grounds, that if we confined the
quarks to be at most a distance dmax = Bp/4 or Bp/2 apart, we would see an increase in the
strength of the correlation. This expectation is confirmed by the results shown in Fig. 4.14.
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4.5.2 Q2
sBp dependence

In our model, the parameter Bp controls the mean transverse area of the projectile, and
therefore the transverse overlap area of the scattering off the target. The scale 1/Q2

s sets the
scale for the size of color domains in the target. Therefore the dimensionless product Q2

sBp

can be interpreted as the number of domains in the target that overlap the projectile. In
fact, this dimensionless parameter controls the strength of all correlations. Fig. 4.15 shows
c2{2} for three values of Bp for pmax

⊥ = 3 GeV; note that Bp = 4 GeV−2 is used elsewhere
in this work. The inset in Fig. 4.15 shows the same quantity plotted as a function of the
dimensionless scale Q2

sBp demonstrating that all results fall onto a universal curve, as they
must.

One might expect that the strength of the correlation should fall with the number of
domains 1/(Q2

sBp), which is a feature of independent cluster models. However, a falloff that
goes like 1/(Q2

sBp) is not seen in the results presented above. The reason is that there is an-
other scale, pmax

⊥ , which controls the maximal momentum kick from the target to the probe.
The inverse of pmax

⊥ is therefore the smallest distance in the target resolved by the probe.
One can therefore construct two dimensionless combinations Q2

sBp and Q2
s/(p

max
⊥ )2; the de-

pendence of our results on the number of color domains also depends on what Q2
s/(p

max
⊥ )2

is.

For (pmax
⊥ )2 ≳ Q2

s, the probe resolves a transverse area in the target that is on the order
or smaller than the size of a color domain. Because the probe can resolve the structure
within individual domains, we expect to see a falloff in correlations to go approximately as
1/(Q2

sBp). Fig. 4.16 shows c2{2} for pmax
⊥ = 10,20,40 GeV, all of which satisfy the scaling

form (Q2
sBp)

−0.95 at large Q2
s. On the other hand, for (pmax

⊥ )2 ≤ Q2
s, the probe only resolves

transverse sizes larger than the typical domain size. For these smaller values of pmax
⊥ , in-

creasing Q2
sBp, and therefore the number of color domains, does not change the signal since

the probe cannot resolve the change in the number of color domains. Fig. 4.16 shows that
for pmax

⊥ = 3,5 GeV we see a rather modest falloff with the number of domains (Q2
sBp)

−0.18.
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can see a falloff in the value of the cumulant that scales approximately with the number of
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Our results in Fig. 4.16 suggest more generally that for small values of pmax
⊥ relative to the

saturation scale Qs azimuthal cumulants in initial state models are weakly dependent on the
number of clusters. This independence of Fourier harmonics on the number of clusters has
been interpreted previously as occurring due to the collective response of the system [321].
While coherent multiple scattering may be collective, it is not a final state effect in pA
collisions; the interaction with the target is instantaneous and the scattered quarks do not
subsequently rescatter.

4.5.3 Nc dependence

In Ref. [322], we showed that an Abelianized version of our model demonstrates the system-
atics often attributed to collective behavior, v2{4} ≈ v2{6} ≈ v2{8}. Given this finding, it
is natural (and of intrinsic interest) to determine the Nc dependence of the two- and four-
particle azimuthal correlations. The dependence of v2{2}(p⊥) for Nc = 2,3 was discussed
previously in Ref. [268]. In the left panel of Fig. 4.17, we plot the dependence of integrated
v2{2} (up to a pmax

⊥ = 2 GeV) as a function of Q2
s for the Abelian (Nc = 1) case and for

Nc = 2 − 5. For large Q2
s, we observe a convergence of the results for Nc ≥ 3. In the right

panel of Fig. 4.17, we plot the Nc dependence of v2{4} as a function of Q2
s. When v2{4}

is real and large, we expect the second term in Eq. (4.40) for the four-particle cumulant to
dominate. This should then give v2{4} ∼ 1/Nc. We see from Fig. 4.17 that Nc v2{4} begins
to converge for Nc ≥ 3; however, due to limited statistics, the error bars are large.

We previously reported in Ref. [322] on results for the symmetric cumulants for SC(2,3)
and SC(2,4) which were in qualitative agreement with experimental results [317]. In Fig. 4.18,
we show the Nc dependence of the symmetric cumulants. We find that these symmetric cu-
mulants are extremely sensitive to Nc. (We have chosen here pmax

⊥ = 2 GeV.) For the Abelian
case, the result is an order of magnitude larger than the finite Nc results. Further, SC(2,3)
is positive in the Abelian case, which is not observed in any experimental observations.
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1 GeV2.

Interestingly, within the limited number of observables that we have studied, this appears
to be the only place where the Abelian version of our model qualitatively differs from the
non-Abelian results.

One may infer that there is something specific to the non-Abelian nature of coherent
scattering that drives SC(2,3) to become negative. Going to Nc = 2, we find that SC(2,3) is
identically zero. This is not surprising, as for Nc = 2, all odd harmonics are identically zero.
This is analogous to the absence of odd harmonics for gluons scattering off a target [62]. The
underlying reason is that SU(2) representations are real, regardless of whether they are in
the fundamental or the in adjoint. For SU(3), only the adjoint representation is real. Thus
one expects qualitatively different results for even-odd cumulants for Nc ≥ 3 relative to the
Abelian model and for Nc = 2.
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scattering compared to the result, given in Eq. (G.11), from the Glasma graph approximation.

4.5.4 Comparison to Glasma graphs

To elucidate the mechanism responsible for the observed negativity of c2{4} for our model,
we compare this result to that from the Glasma graph approximation. In this Glasma graph
approximation, which is applicable for p⊥ > Qs, the Wilson lines are expanded out to lowest
nontrivial order in the gauge fields. The Glasma graph approximation is reviewed in the
Appendix, where we also compute the four-dipole correlation function in this approximation.
This approximation was used previously to successfully describe two-particle correlations [83,
270, 84, 85, 86, 87, 88], especially near side “ridge” correlations.

Fig. 4.19 shows a comparison of c2{4} in the Glasma graph approximation to our result,
which includes all order contributions from the Wilson lines. It is clear that coherent multiple
scattering in the MV model computation for c2{4} drives it to become negative. In contrast,
the Glasma graph approximation to this full result is always positive.

It is interesting to explore further the physics underlying this striking result. Intrinsic n-
particle correlations in the Glasma graph approximation are large. Indeed, the strength of the
correlated piece in this distribution relative to the disconnected product of n single-particle
distributions is the same for all n; this is close to that of an n-particle Bose distribution [323].
Our results suggest that coherent multiple scattering depletes these higher-point intrinsic
correlations. In Eq. (4.40) for instance, this would lead to the second term (the square of
c2{2}) to dominating over the first term, which comes from intrinsic four-particle correlations.

4.5.5 Rapidity dependence

Before we conclude our discussion of features of the model, it is appropriate to discuss
how rapidity correlations manifest themselves in this framework. Since long range rapidity
correlations are an essential feature of the experimentally observed ridge-like correlations, it
is important to determine whether such correlations are present in this framework. This is
particularly so since the hybrid formalism employed in analytical studies of such multiparticle
correlations [273, 324, 325] is valid in the forward rapidity region. More precisely, x in the
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projectile should be relatively large, with typical values for large-x taken to be x ≥ 0.01.
However this does not imply that the resulting correlations are short-range in rapidity. We
will show this explicitly by reintroducing rapidity dependence into the single-particle and
multi-particle distributions.

We consider an eikonal quark in the projectile traveling in the z+ direction with initial
momentum kµ = (k+,0,k⊥ = 0) and final momentum pµ = (p+,0,p⊥) after its scattering off
the target. In the hybrid framework, the differential multiplicity of the scattered quark with
the final state of momentum p ≡ (p+,p⊥) is given as

dN qA→q+X

d3p
≡
dN qA→q+X

dp+d2p⊥
= δ(p+ − k+)

dN qA→q+X

d2p⊥
. (4.47)

The above result can be worked out following the formalism of Ref. [273]. (Note though that
in Ref. [273], the quark is traveling in the z− direction.) The expression for dN/d2p⊥ is given
by Eq. (4.6), where averaging over the target we previously defined is implicitly assumed.
Therefore, for single-quark scattering the distribution is a delta function in δ(p+−k+), which
is simply a consequence of the eikonal approximation.

The single inclusive distribution of quarks produced in pA collisions is obtained by con-
voluting the above expression with the quark parton distribution, which represents the prob-
ability of finding a quark in the proton wavefunction:

dNpA→q+X

d3p
= ∫ dxqf(xq)

dN qA→q+X

d3p
. (4.48)

To obtain the single inclusive distribution of hadrons, this expression has to further convo-
luted with a fragmentation function. This will quantitatively modify the rapidity dependence
but will not modify it qualitatively. We will therefore not further consider this point.

The longitudinal momentum carried by the initial quark is k+ =
√
s√
2
xq, where xq is the

quark’s momentum fraction. Likewise, the longitudinal momentum of the final-state quark
can be written in terms of its rapidity as p+ = p⊥√

2
ey. Substituting Eq. (4.47) into Eq. (4.48),

we then obtain
dNpA→q+X

dyd2p⊥
= x′qf(x

′
q)
dN qA→q+X

d2p⊥
, (4.49)

where x′q has been set by the δ-function to be

x′q =
p⊥
√
s
ey . (4.50)

In Fig. 4.20a, we show the single-particle inclusive quark distribution using the NNPDF
NLO singlet PDF at Q2 = 9 GeV2 [326]. For p⊥ = 3 GeV and

√
s = 5.02 TeV, a value of

xq = 0.01 corresponds to a rapidity of y ≃ 2.8. Thus, while strictly speaking, our approach is
valid for y ≥ 2.8, we can see that the particle production does extend over a wide range in
rapidity and is not peaked in the forward direction.

This can be extended to multiparticle production in the same fashion. For instance, for
two particles, we would obtain

d2NpA→q+X

dy1d2p1,⊥dy2d2p2,⊥
= x′q1f(x

′
q1)x

′
q2f(x

′
q2)

d2N qA→q+X

d2p1,⊥d2p2,⊥
. (4.51)
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(a) Single particle distribution dN/dy in arbi-
trary units as a function of rapidity for p⊥ =
3 GeV and

√
s = 5.02 TeV.
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(b) Two-particle distribution d2N/dy1dy2 in ar-
bitrary units as a function of ∆y = ∣y1 − y2∣ for
y1 ≃ 2.8, which corresponds to x′q1 = 0.01 in the
projectile.

Figure 4.20

This two-particle distribution is shown in Fig. 4.20b. The rapidity of the first quark is fixed
at the edge of where the hybrid approach works. We see that the correlation persists out to
a ∆y of 3 to 4 units as the rapidity of the second quark is varied.

We conclude by pointing out that when the observed correlations are long range in
rapidity; a feature we have neglected any discussion of in our model. The factorized form
of the rapidity dependence in Eq. (4.51) is then suggestive that the resulting vn{m} will
be weakly dependent, or perhaps even constant, as a function of rapidity. We can test
this conjecture. In the “hybrid” framework, valid in the forward region, we should consider
quarks with relatively large xq (usually taken to be xq ≥ 0.01). These large xq quarks are
most naturally taken to be valence quarks, whereas long-range correlations necessarily probe
smaller xq quarks. This does not preclude long-range correlations in our model. In order to
include the quark rapidity dependence, we consider the single quark distribution in Eq. (4.6)
and convolve it with the quark distribution function f(xq) to write (in terms of the rapidity
y and quark transverse momentum p⊥) [327]

dNpA→q+X

dyd2p⊥
= xqf(xq)

dN qA→q+X

d2p⊥
; xq =

p⊥
√
s
ey . (4.52)

For our results, we will employ the quark distribution functions of the NNPDF collab-
oration [326]. While its straightforward to possible include the fragmentation of the final
state quarks into hadrons, this will not qualitatively change the rapidity dependence.

Our computation for the rapidity dependence are shown in Fig. 4.21. We first consider
a valence quark at y = 5.1; at the top LHC energy of

√
s = 5.02 TeV, this corresponds to

an xq = 0.1. Then considering a separation in rapidity of 4 units, which corresponds to a
second quark with xq ≃ 0.002, we clearly see that there is no quantitative difference with our
previous result that neglected any rapidity dependence. Since it is unlikely a valence quark
at this small x can be found in the proton, we can also consider a valence quark with larger
xq ≃ 0.01, corresponding to y = 2.8. There is no difference in the observed correlations for the
two rapidity gaps considered. It is also interesting to consider correlations between valence
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Figure 4.21: Two-particle second Fourier harmonic v2{2} as a function of the momentum
of one of the quarks both with and without rapidity dependence introduced via convolution
with quark distributions.

and sea quarks. For four-particle correlations, if one does not consider correlations with and
amongst gluons, this is the most likely scenario. Fig. 4.21 shows that all the differences are
only quantitative, not qualitative. This is because when one takes the ratio of distributions
to compute c2{2} (see Eq. (4.39)), the rapidity dependence in our model all but disappears.

4.6 Conclusions

In this chapter, we have discussed the parton model framework for multiparticle correlations
that was first presented in Ref. [322, 327, 328]. In this model, collinear partons that are
localized in a transverse area Bp in the projectile, scatter off color domains of size 1/Q2

s

in the target. The building blocks in this framework are dipole correlators. For a quark
projectile, these correspond to a color trace over a path ordered lightlike Wilson line of
target fields at a given transverse spatial position in the amplitude multiplied by its adjoint
in the complex-conjugate amplitude, normalized by the number of colors, Nc. The azimuthal
cumulants of n-particles are proportional to the expectation value over the product of n-
dipole correlators. We discussed at length the procedure to compute the expectation value
of four-dipole correlators. Gluon exchanges among the dipoles generate distinct quadrupole,
sextupole, and octupole topologies and the permutations of their spatial positions, generating
a 24 by 24 matrix, that can be exponentiated to determine the expectation value of four-
dipole correlators. Our procedure can be extended straightforwardly to compute expectation
values of products of an arbitrary number of dipole operators.

We presented results for vn{2} as a function of Q2
s, demonstrating a clear hierarchy in

the n = 2,3,4,5 harmonics. These results are only weakly dependent on pmax
⊥ upper limit

in the integrals. All the harmonics show only a weak dependence on Q2
s. Since Q2

s in the
CGC framework increases with increasing energy, and centrality, our results are only weakly
dependent on these. Note further that our results, by construction, are independent of the
multiplicity. These results for vn{2} exhibit the qualitative features of the data seen in
light-heavy ion collisions at RHIC and the LHC.
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We next presented results for c2{4} as a function of Q2
s for two different values of pmax

⊥ .
For both these values, c2{4} changes sign around Q2

s = 0.3 GeV2 and becomes increasingly
negative before appearing to saturate. For large Q2

s, the results are sensitive to pmax
⊥ . The

negative value of c2{4} corresponds to a real v2{4}. We computed the ratio of v2{4}/v2{2}.
In hydrodynamic models, such ratios are sensitive to the initial geometry in the system,
motivating experimental extractions of the same. The values we obtained are about 10%
lower than the data, which at present have significant error bars.

The dependence of v2{2} and v2{4} as a function of p⊥ increases with p⊥ before saturating
and turning over. For both quantities, this saturation occurs later with increasing Q2

s. In
particular, for v2{4}, we observed for Q2

s = 2 GeV2 that it is quite flat for the p⊥ range
between 1 and 2 GeV. These features of our results are also qualitatively similar to data on
small-particle systems. To the best of our knowledge, no computations exist in other models
for v2{4}(p⊥).

Symmetric cumulants SC(n,n′), which measure the correlation of nth Fourier harmonics
with n′ Fourier harmonics, were constructed to understand the nonlinear hydrodynamic
response of the system to correlations in the initial spatial geometry. We studied these
in our initial state framework as a function of Q2

s. We showed in Ref. [322] that SC(2,3)
and SC(2,4) computed are in qualitative agreement with the data presented for heavy-
ion collisions and in light-heavy ion collisions. Here, we make predictions for the SC(3,4),
SC(2,5), and SC(3,5) cumulants.

Finally, we have shown that our simple initial state model is able to qualitatively re-
produce the key signature of multiparticle collectivity, the ordering of the harmonics v2{m}

for increasing even particle number such that v{2} > v2{4} ≃ v2{6} ≃ v2{8}, albeit in the
Abelianized version. We however expect that this behavior is not unique to the Abelian
version of our model, as the mechanism in our model which is responsible for the reality
of the m ≥ 4 harmonics is coherent multiple scattering, a feature in both the Abelian and
non-Abelian versions. When this convergence was first seen in experiment, it was seen by
some to be definitive evidence of hydrodynamic collectivity. Fig. 4.13 provides an extremely
simple counter example that this pattern, in of itself, is not conclusive to understand the
underlying physics.

We examined closely the dependence of our results on Q2
sBp and Q2

s/(p
max
⊥ )2, the two

dimensionless parameters in our model. The former corresponds to the number of color
domains in the target that are encountered by the projectile. The latter corresponds to the
resolution of the partons in the projectile to the structure of the color domains. Interestingly,
we find that for larger values of Q2

s/(p
max
⊥ )2, the two-particle cumulants are only weakly

dependent on the number of color domains. In contrast, for smaller values of Q2
s/(p

max
⊥ )2,

we find that the cumulant behaves approximately as 1/(Q2
sBp), as would be anticipated in

an independent cluster model. Our results suggest therefore that the pmax
⊥ considered is

important in any interpretation of the data that may be construed as satisfying or violating
an independent cluster model.

We studied next the dependence of our results on Nc. In [322], we showed that the
Abelianized treatment of our model reproduced the pattern of v2{2} > v2{4} ≈ v2{6} ≈ v2{8}
seen in the data on pA collisions at the LHC. We studied further the Nc dependence of v2{2}
and v2{4} and demonstrated that the both behave as 1/Nc for Nc ≥ 3. There is therefore
no ordering in Nc among m-particle cumulants. Practically, it means that Nc suppressed
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topologies in products of lightlike Wilson lines must be included in such computations.
Unlike the azimuthal cumulants c2{4}, the symmetric cumulants SC(n,n′) (where n

and n′ denote distinct Fourier harmonics) have a qualitatively different behavior in the
Abelian formulation of the model relative to those for the Nc = 3 case. This qualitative
difference is not unique to Nc = 1. It is also seen for Nc = 2. In this latter case, the odd
harmonics are strictly zero; hence, the corresponding symmetric cumulants are also zero.
As we discussed, the underlying reason is that for SU(2) both fundamental and adjoint
representations are real. This is responsible for two-particle correlations being symmetric
about relative azimuthal angles of zero and π.

To obtain deeper insight into our results, we examined our results within the Glasma
graph approximation to our framework. This approximation corresponds to expanding out
the Wilson lines in the dipole correlators to lowest nontrivial order. Physically, it corresponds
to each quark line interacting at most with two gluons, either in the amplitude, or the
complex-conjugate amplitude, or across the cut separating the two. It is justified when
Q2
s ≪ p2

⊥. Remarkably, we find that our results for c2{4} are qualitatively different when we
include coherent multiple scattering (Q2

s/p
2
⊥ to all orders) as opposed to the Glasma graph

approximation. In the former case, one obtains a real and positive v2{4}; in the latter case,
one does not. Therefore, the absence of vn{m} multiparticle correlations in previous Glasma
graph treatments is an artifact of the approximation and not a genuine feature of initial
state frameworks.

We noted that multiparticle correlations are quite strong in the Glasma graph approxi-
mation, and are close to those of an m-particle Bose distribution. Indeed, this may be the
reason why one does not see signatures of “collectivity”, as defined by the vn{m} Fourier har-
monics. These assume that the mean and variance dominate the cumulant distribution. Our
results suggest that coherent multiple scattering dilutes the contributions from the higher
cumulants relative to the mean and the variance, thereby generating the aforementioned
signatures of collectivity. In our model, however, the coherent scattering is virtually instan-
taneous. It takes place on a time scale corresponding to the time it takes partons to cross a
Lorentz contracted nucleus. Further, the partons that scatter off the common color field do
not rescatter.

The origin of this putative signature of collectivity therefore has little to do with hydro-
dynamics per se. However, our results do not exclude the possible presence of final state
interactions, or even hydrodynamics, in the data on light-heavy ion systems. They do pro-
vide a clear and simple counterexample to interpretations of these signatures as being of
unique origin. Such signatures of collectivity must also be consistent with other signatures
of collectivity. In the larger heavy-ion collision systems, jet quenching is seen very clearly,
and is an independently robust measure of final state interactions.

It is interesting to consider how this model can be developed further. Gluon degrees
of freedom, which are not apparent at lower energies, become important when hadrons are
boosted to higher energies. As is well known, a bremsstrahlung cascade develops, which
then has a shock wave interaction with the nucleus. The partons in the cascade subsequently
fragment to hadrons. This picture is implicit in the CGC+PYTHIA model of so-called dense-
dense collisions of small systems [329] that combines Yang-Mills dynamics of gluons [62]
with Lund fragmentation [330]. Because event-by-event simulations are essential to compute
multiparticle cumulants, such computations are computationally intensive. To this end, in
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the next chapter, we will follow up on this proof-of-principle model with a more physically
motivated, and constrained, framework where we can compute correlations from initial state
gluons.
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Chapter 5

Gluon correlations and their relation
to physics at RHIC

The following chapter is based off of

• M. Mace, V. Skokov, P. Tribedy, R. Venugopalan. Hierarchy of azimuthal anisotropy
harmonics in collisions of small systems from the Color Glass Condensate. Phys.
Rev. Lett. 121, 052301 (2018); arXiv:1805.09342 [hep-ph]. Copyright (2018) by the
American Physical Society

• M. Mace, V. Skokov, P. Tribedy, R. Venugopalan. Systematics of azimuthal anisotropy
harmonics in proton-nucleus collisions at the LHC from the Color Glass Condensate
arXiv:1807.00825 [hep-ph].

In this chapter, we will utilize the dilute-dense CGC EFT framework, introduced in
Sec. 1.4.1, coupled with realistic nuclear modeling, to study two-particle correlations in small
colliding nuclear systems. First, in Sec. 5.1, we consider the “geometry scan” recently per-
formed by the PHENIX collaboration at RHIC. Then in Sec. 5.2 we will use this framework
to analytically, and the numerically, study the multiplicity dependence of vn correlations
observed at the LHC.

5.1 RHIC geometry scan

In a recent preprint [7], the PHENIX collaboration presented measurements of the second
and third Fourier harmonics (v2 and v3 respectively) of two-particle azimuthal correlations
in collisions of protons (p), deuterons (d), and helium-3 (3He) ions off gold (Au) nuclei at
center-of-mass energies

√
s = 200 GeV/nucleon. The measurements were performed in the

0-5% centrality class of events in each of the three systems. They significantly improve the
precision and reach of previous measurements [331, 332, 333] and strongly confirm the system
size dependence of the functions v2(p⊥) and v3(p⊥), where p⊥ is the measured transverse
momentum of charged hadrons.
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In [7], the measurements are interpreted as providing strong support to the idea that the
collisions of these small systems are producing nature’s smallest droplets of a nearly perfect
fluid Quark-Gluon Plasma (QGP) [334]. This is in part due to the apparent agreement of the
data with two hydrodynamical model computations SONIC [335] and iEBE-VISHNU [336].
Further, while the transport model AMPT [337] reproduces their data, the authors of [7]
suggest it is disfavored because model computations do not describe large and small systems
with a consistent parameter set. Finally, [7] claims that initial state color correlations in the
colliding ions are ruled out as an explanation of the systematics of their data. This claim is
however not substantiated by any comparison to initial state models.

In this letter, we will demonstrate that initial state color correlations computed in
the Color Glass Condensate [9] effective field theory (CGC EFT) describe the systemat-
ics of the PHENIX measurements of v2,3(p⊥) in light-heavy ion collisions. The essential
physics underlying the result was already noted in parton model computations, presented in
Chapter 4, wherein quarks from the small sized light ions scatter off domains of strong
chromo-electromagnetic fields in the heavy ion target [327, 322, 328]. The size of the
color domains in this “toy” model are set by a semi-hard saturation scale QS in the tar-
get. While this scale plays a critical role in what follows, many features of the phenomena
under consideration are universal and related to basic quantum properties of the under-
lying theory, including Bose-enhancement and Hanbury-Brown–Twiss (HBT) interference
effects [83, 325, 338, 339, 340, 341, 342, 343].

Our computations are performed within the dilute-dense power counting of the CGC
EFT. Observables are computed in an expansion that includes the leading contribution and
the first non-trivial saturation correction [278, 81, 340] to the color charge density of the
projectile and to all orders in the corresponding color charge densities of the dense Au
nucleus. This saturation correction removes an “accidental” parity symmetry arising from
including only the leading order term, and is responsible for the v3 azimuthal asymmetry in
the dilute-dense approximation of the CGC EFT. The accidental nature of this symmetry
was known previously from analytical and numerical computations in the full dense-dense
(all orders in color charge densities of projectile and target) EFT [61, 62]. However because
computations in the latter are numerically intensive, obtaining analytical expressions for the
non-trivial saturation correction has proved extremely efficacious a.

The single particle inclusive gluon distribution in the dilute-dense CGC EFT, expressed
as a functional of two-dimensional Fourier transform ρp (ρt) of the projectile (target) color
charge density, ρ̃p (ρ̃t), can be generically decomposed into the parity-even and parity-odd
contributions,

dN even,odd(k⊥)

d2kdy
=

1

2
(
dN(k⊥)

d2kdy
[ρp, ρt] ±

dN(−k⊥)

d2kdy
[ρp, ρt]) . (5.1)

aComparing benchmark results in dense-dense and dilute-dense computations is a good measure of a
systematic uncertainty in the latter.
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Figure 5.1: Examples of color charge densities determined from Glauber sampling with the
IP-Sat model [4, 5] for a single event for p,d, and 3He from high multiplicity events which
contribute to the 0-5% centrality class.

Analytical computations [344, 79, 80, 324, 325] provide the compact result [81, 340]

dN even(k⊥)

d2kdy
[ρp, ρt] =

2

(2π)3

δijδlm + εijεlm
k2

Ωa
ij(k⊥) [Ω

a
lm(k⊥)]

⋆
, (5.2)

dNodd(k⊥)

d2kdy
[ρp, ρt] =

2

(2π)3
Im

⎧⎪⎪
⎨
⎪⎪⎩

g

k⊥
2 ∫

d2l

(2π)2

Sign(k⊥ × l⊥)

l2∣k⊥ − l⊥∣2
fabcΩa

ij(l⊥)Ω
b
mn(k⊥ − l⊥) [Ω

c
rp(k⊥)]

⋆

× [ (k⊥
2εijεmn − l⊥ ⋅ (k⊥ − l⊥)(ε

ijεmn + δijδmn)) εrp

+ 2k⊥ ⋅ (k⊥ − l⊥)ε
ijδmnδrp]

⎫⎪⎪
⎬
⎪⎪⎭

, (5.3)

where

Ωa
ij(k⊥) = g∫

d2p

(2π)2

pi(k − p)j
p2

ρbp(p⊥)Uab(k⊥ − p⊥) (5.4)

and εij(δij) denotes the Levi-Civita symbol (Kronecker delta). The adjoint Wilson line Uab
is a functional of the target charge density and is the two-dimensional Fourier transform of
its coordinate space counterpart: Ũ(x⊥) = P exp (ig2

∫ dx
+ 1
∇⊥2 ρ̃at (x

+,x⊥)Ta) .
Comparing the even and odd contributions in Eqs. (5.2) and (5.3) respectively, one ob-

serves that the odd contribution is suppressed in the CGC EFT by αSρp, where αS = g2/4π
is the QCD coupling. This factor arises from the first saturation correction in the interac-
tions with the dilute projectile [81, 340]. This systematic suppression in the power counting
is what naturally explains in this framework the relative magnitude of v2

3{2} compared to
v2

2{2} observed in the experimental data on small systems.
The m-particle momentum distribution is obtained after performing an ensemble average

over the color charge distributions with the weight functionals, W [ρ̃p,t],

dmN

d2k1dy1⋯d2kmdym
= ∫ DρpDρt W [ρp]W [ρt]

dN

d2k1dy1

[ρp, ρt]⋯
dN

d2kmdym
[ρp, ρt] . (5.5)

These have the form described by the McLerran-Venugopalan (MV) model [48, 49]

W [ρ̃p,t] = N exp [−∫ dx−,+d2x
ρ̃ap,t(x

−,+,x⊥)ρ̃ap,t(x
−,+,x⊥)

2µ2
p,t

] , (5.6)
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Figure 5.2: The multiplicity distribution of produced particles computed in the dilute-dense
CGC framework compared to STAR d+Au data [6].

but are in fact more general because, as a consequence of renormalization group evolution
of the color sources in the parton momentum fraction x [345, 277], the color charge squared
per unit area µ2

p,t is a function of x and spatial location of color charges in the transverse
plane. Specifically, we follow the same procedure as the phenomenologically constrained
IP-Glasma model [5], where the projectile and the target sources are placed using Glauber
sampling of nucleons in the transverse plane [346], with position x⊥ and impact parameter
b⊥, and g2µ(x,x⊥,b⊥) is determined by the IP-Sat model [4]. Examples of the color charge
distributions that produce gluons with multiplicities lying in the 0-5% centrality class of the
three systems are shown in Fig. 5.1. We will return later to the important message conveyed
by this visual depiction.

An essential requirement of a first principles framework is to describe experimental data
on the multiplicity distribution in light-heavy ion collisions. This is important to show that
the framework captures the underlying physics of correlations and fluctuations. It is also cru-
cial for performing a reliable “apples to apples” centrality selection of events/configurations.
It was shown in a remarkable paper [323] that the CGC EFT generates negative binomial dis-
tributions (NBD); subsequently, the impact parameter convoluted NBDs from the CGC EFT
were employed to describe multiplicity distributions in proton-proton, proton-nucleus, and
nucleus-nucleus collisions [347, 226]. Fluctuations of the saturation momentum itself [348]
are important to describe high multiplicity tails; the quantitative impact of these is discussed
in [349, 350].

Fig. 5.2 shows that the multiplicity distribution as a function of the number of charged
hadrons Nch for the rapidity window ∣η∣ < 0.5 in d+Au collisions published by the STAR
collaboration at RHIC [6] is well reproduced in the dilute-dense CGC EFT. The details
of the numerical computation on two-dimensional lattices are identical to those articulated
previously [351, 5, 305, 340]. The free parameters in our framework are fixed by minimizing
the deviations from the measured multiplicity distribution. These include the mean of the
ratio QS/g2µ taken to be 0.5, the variance of Gaussian fluctuations of ln(Q2

S) [350] taken to
be σ = 0.5, as well as an infrared cutoff scale for color fields taken to be m = 0.3 GeV. The
effect of variations in these nonperturbative quantities was carefully examined in [349] and
contributes to the systematic uncertainties of our computations.
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Figure 5.3: Hierarchy of anisotropies v2,3(p⊥) of gluons produced in the 0-5% centrality class
of light-heavy ion collisions computed in the dilute-dense CGC framework

With the parameters thus constrained, we now turn to computing the azimuthal anisotropies
in light-heavy ion collisions. Defining for a fixed configuration of color sources, the harmonics
for the single particle azimuthal anisotropy as

Vn(p1, p2) =
∫
p2

p1
k⊥dk⊥

dφ
2πe

inφ dN(k⊥)
d2kdy [ρp, ρt]

∫
p2

p1
k⊥dk⊥

dφ
2π

dN(k⊥)
d2kdy [ρp, ρt]

, (5.7)

the physical two-particle anisotropy coefficients can be simply expressed as

v2
n{2}(p⊥) = ∫ DρpDρt W [ρp] W [ρt] × Vn(p⊥ −∆/2, p⊥ +∆/2)V ⋆

n (0,ΛUV ) . (5.8)

We consider ∆ = 0.5 GeV bins in p⊥, similar to what was done in [7]. It is important
to note that technically [7] calculates the event plane v2; however since the event plane
resolution is small b, these two quantities are very similar [352]. Here ΛUV is the ultraviolet
p⊥ cutoff, defined by the inverse lattice spacing – our results are insensitive to this cutoff.
An identical computation was performed previously in the dense-dense framework to extract
v2 and v3 [62]. Our dilute-dense framework however has the significant advantage that
analytical expressions can be written down and results do not require numerical evaluation
of the temporal evolution of the classical Yang-Mills equations.

The results of our computation for the hierarchy of v2(p⊥) and v3(p⊥) gluon anisotropies
for p+Au, d+Au and 3He+Au collisions at

√
s = 200 GeV/nucleon in the 0-5% centrality

class for each of the three systems is shown in Fig. 5.3. A clear hierarchy is observed in the
magnitudes of v2,3(p⊥) for p+Au and those for d+Au and 3He+Au. For most of the p⊥ range
plotted, this is opposite to the naive expectation that the anisotropies should be suppressed
with an increasing number of color domains. Between d+Au and 3He+Au, this hierarchy is
not clearly distinguishable for v2(p⊥); it is however clearly visible for v3(p⊥). As discussed
previously in the toy model computation of Chapter 4, the scaling with inverse number of

bThe PHENIX experiment has event plane resolution of 6.7% and 5.7% for p+Au and d+Au respec-
tively [7]
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Figure 5.4: Comparision of the results shown in Fig. 5.3 to v2 and v3 for charged hadron
data from the PHENIX collaboration [7].

color domains is violated primarily because of the interplay of two dimensionful scales: in our
case, these are Qp

S, the saturation scale in the projectile, and a typical gluon resolution scale
p̃⊥. In the toy model of [327, 322, 328], p̃⊥ is identical to p⊥; in the dilute-dense framework,
their relation is less straightforward. Domain scaling holds if p̃⊥ > Q

p
S, because then gluons

in the target resolve individual color domains in the projectile. This is clearly seen for v2(p⊥)
at high p⊥ in Fig. 5.3 and a similar trend is seen for v3(p⊥). In contrast, if p̃⊥ < Q

p
S, gluons

in the target cannot resolve individual domains any more but interact with ∼ (Qp
S)

2/p̃2
⊥ of

them simultaneously. In Section 4.5.2 ([327]), it was shown that in this case there is no
suppression with the number of color domains!

Another important element in understanding the systematics of the data is that 0-5%
centrality in 3He+Au collisions corresponds to a significantly higher value of Nch than for
p+Au collisions. In the dilute-dense framework, the multiplicity of an event scales with
(Qp

S)
2 [79, 60]. Thus for 0-5% centralities, Qp

S ∣3He > Q
p
S ∣p. Hence, as long as p̃⊥ < Q

p
S ∣3He,

gluons in the target will coherently interact with (Qp
S ∣3He)

2/p̃2
⊥ domains, many more than in

p+Au. As shown in simple color domain models [294, 268], the corresponding chromoelectric
fields will generate larger anisotropies, but as the similar values of v2(p⊥) between d+Au and
3He+Au in Fig. 5.3 indicates, v2(p⊥) will saturate at large Nch. Because v3 is due to a higher
order αSρp suppressed effect, this saturation may only occur for larger Nch. Our prediction
would therefore be that v2,3(p⊥) for high multiplicity events across small systems should be
identical for the same Nch.

In Fig. 5.4, we overlay Fig. 5.3 on top of the data for charged hadrons presented by the
PHENIX collaboration in [7]. The agreement for v2(p⊥) is quite good across systems. This is
interesting as v2(p⊥) in hydrodynamical models is particularly sensitive to spatial geometry.
For v3(p⊥), while the agreement for 3He is quite good, the computation overshoots the data
in the p,d systems. Since v3 is fluctuation driven, we speculate this may be related to
the fact that our comparison of gluon multiplicities to the Nch multiplicity distribution in
Fig. 5.2 also overshoots the data at high multiplicities. A corollary of this statement is
that our P (Nch/⟨Nch⟩) for 3He should agree with the RHIC Nch distribution when available.
Nevertheless, our computation and the data share the feature that v3(p⊥) for p,d is lower
than that for 3He. We note that hydro models show a similar hierarchy for v3(p⊥) [336]. We
emphasize again that a stronger prediction in our framework is that v3 in high multiplicity
small systems will agree for the same Nch. This is indeed what is seen in peripheral A+A
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collisions at the LHC and in central p +A collisions at the same Nch [297], a feature of data
which in that case is clearly hard to explain by system geometry alone [321].

There are significant systematic uncertainties in the computation. Firstly, within the
framework itself, there are higher order color charge density corrections, which may con-
tribute differently for each of the projectile ions. This uncertainty can be benchmarked with
numerical dense-dense computations for each species. Secondly, nonperturbative model pa-
rameters that are fixed for d+Au collisions by the measured multiplicity distributions may
differ for multiplicity distributions of the other light ions. These are not available at present.
There are uncertainties due to gluon fragmentation and higher order QCD computations.
The technology to estimate the former exists within the CGC+PYTHIA framework [329],
whereby gluons produced from the CGC are connected via strings and the latter are frag-
mented into hadrons with the PYTHIA event generator [353, 354]. Finally, the relative
contribution of final-state scattering should be quantified by matching the CGC initial state
to transport models at later times [355].

While comparisons to data that progressively reduce the stated theoretical uncertain-
ties are essential to understand the quantitative role of initial state correlations, qualitative
trends in data may suffice to assess their dominant role. As our discussion of the physical
underpinnings of the anisotropies suggests, CGC EFT computations will generate simple sys-
tematics of v2,3{2}, as a function of Nch and

√
s which should be straightforward to rule out.

Further, multiparticle azimuthal anisotropy correlations vn{m} for m ≥ 4 can be computed
for light-heavy ion collisions and their systematics compared to data; we caution however
that universal features of the mathematical structure of CGC EFT n-body distributions and
those of hydrodynamic single particle distributions may lead to similar results [356].

A key uncertainty is our knowledge of rare nuclear contributions in high multiplicity
events. As suggested by Fig. 5.1, nucleons overlap more closely in such events relative to
minimum bias events. In particular, electron scattering experiments at Jefferson Lab have
revealed that short-range pairing of nucleons dominates nuclear wavefunctions for momenta
larger than the Fermi momentum [357, 358]. It is conceivable therefore that such “clumpy”
nucleon configurations may contribute significantly to the 3He nuclear wavefunction, be-
yond those anticipated from Green’s function Monte Carlo computations [359, 360]. This
interesting possibility is under active investigation [361].

In summary, we have shown that initial state color correlations in the dilute-dense frame-
work of the CGC EFT provides a competitive explanation for the data presented on az-
imuthal anisotropy coefficients v2 and v3 in small collision systems. Further comparisons to
data in different centrality classes, and to multiparticle anisotropies, can help quantify if and
where the dominant role of initial state correlations in describing the collectivity observed
in small systems breaks down.

5.2 LHC multiplicity dependence

In the previous section, we showed that the dilute-dense framework of the Color Glass
Condensate (CGC) Effective Field Theory (EFT) [9] qualitatively describes the hierarchy
of v2,3(p⊥) azimuthal Fourier harmonic coefficients of rapidity separated two-particle “ridge”
correlations measured by the PHENIX experiment in collisions of proton/deuterium/helium-
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3 ions off gold ions at center-of-mass energy of
√
s = 200 GeV/nucleon [7]. Within theoretical

uncertainties, the CGC EFT computations also provide semi-quantitative agreement with
the PHENIX measurements.

The model to data comparison suggests that initial state correlations in the hadron
wavefunctions provide a competitive alternative explanation to models that describe the data
in terms of hydrodynamic collectivity of the quark-gluon matter produced in the collisions.
This conclusion is fortified by the fact that the systematics of m-particle vn{m} harmonics,
previously believed to provide an unambiguous signature of hydrodynamic collectivity, are
also reproduced in the simple initial state parton model of Chapter 4.

While theory comparisons to measurements across system size are very important for
understanding the underlying physical origin of the ridge two-particle correlations, they are
at present available only for events characterized by a limited range in Nch, the number of
charged particles produced. However extensive data on the Nch dependence of ridge yields
(and the corresponding vn coefficients) is available in proton-lead (p+A) collisions at the
LHC at

√
s = 5.02 GeV/nucleon. In addition, p+A collisions have the virtue that modeling

the proton wavefunction at high energies is simpler than that of the deuteron or helium-3.
Reproducing the systematics of the vn dependence on Nch in small systems even qualitatively
is a challenge for all theory frameworks and can help distinguish between them.

In this note, we will examine the Nch dependence of the azimuthal Fourier harmonics as
measured by the ATLAS experiment in p+A collisions at 5.02 TeV/nucleon. We will show
that the qualitative features of the data can be deduced very simply from the corresponding
equations in the dilute-dense approximation of the CGC. We will go one step further and
show that the magnitude of v2 and v4, as a function of Nch, is reproduced in the CGC EFT
within theoretical uncertainties. For reasons we shall discuss, quantitative results for the Nch

dependence of v3 are more challenging numerically – it is outside the scope of the present
work.

The dilute-dense approximation [344, 79, 80, 324, 325] of the CGC EFT consists of
keeping terms in the solution of the QCD Yang-Mills equations to compute inclusive gluon
amplitudes that are to lowest order in the ratio ρp/k2

⊥,p in the projectile but to all orders
in the ratio ρt/k2

⊥,t in the target c. Here ρp(ρt) is color charge density in the proton (lead
nucleus) and k⊥,p (k⊥,t) is the transverse momentum of the scattered gluon from the proton
(lead nucleus). While this dilute-dense approximation may be sufficient to compute the even
harmonics v2n, an accidental parity symmetry sets v3 = 0 at this order. This is well known
to be an artifact of the leading order in ρp/k2

⊥,p approximation. For instance, numerical work
in the dense-dense limit of the CGC EFT, where all orders in both ρp/k2

⊥,p and ρt/k2
⊥,t are

kept, clearly recover finite values of v3 [61, 62].

Indeed, as shown explicitly recently [81, 278, 340], the first nontrivial ρp/k2
⊥,p correction

breaks the accidental parity symmetry and gives a finite contribution to v3. Thus a nonzero
value for odd azimuthal anisotropies in the CGC EFT can be understood to be a unique
signature of the emerging coherence of the classical gluon field in the projectile. To quantify
these statements, we use the expressions from the previous section, where in Eq. (5.1) we
decomposed the single particle inclusive gluon distribution in the dilute-dense CGC EFT

cA further glasma graph approximation corresponds to the regime where one expands to lowest order in
both ρp/k2⊥,p and ρt/k2⊥,t [83, 270, 85, 86, 87, 88].
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Figure 5.5: Diagrammatic representation of the leading order contributions to the a) P-even
and b) P-odd parts of the inclusive gluon production cross section; the straight vertical
lines represent multiple scattering in the gluon “shockwave” field of the target. The curved
vertical line denotes the cut separating the amplitude from the complex conjugate amplitude.

into parity-even and parity-odd contributions, Eq. (5.2) and Eq. (5.3) respectively [81, 340].
If we compare these even and odd contributions, one observes that the latter is suppressed in
the CGC EFT power counting by αSρp, where αS = g2/4π is the QCD coupling. This is also
apparent from the diagrammatic representation of the inclusive single particle distribution
depicted in Fig. 5.5.

Defining the harmonics of the even and odd single particle azimuthal momentum anisotropies,
for a fixed configuration of ρp and ρt, respectively as

Q2n [ρp, ρt] =
∫
p2

p1
k⊥dk⊥

dφ
2πe

i2nφ dN
even(k⊥)
d2kdy [ρp, ρt]

∫
p2

p1
k⊥dk⊥

dφ
2π

dNeven(k⊥)
d2kdy [ρp, ρt]

, (5.9)

Q2n+1 [ρp, ρt] =
∫
p2

p1
k⊥dk⊥

dφ
2πe

i(2n+1)φ dNodd(k⊥)
d2kdy [ρp, ρt]

∫
p2

p1
k⊥dk⊥

dφ
2π

dNeven(k⊥)
d2kdy [ρp, ρt]

, (5.10)

the physical two-particle anisotropy coefficients can be simply expressed as d

v2
n{2}(Nch) = ∫ DρpDρt W [ρp] W [ρt]∣Qn [ρp, ρt] ∣

2 δ (
dN

dy
[ρp, ρt] −Nch) . (5.11)

The weight functionals representing the distribution of color sources,

W [ρ̃p,t] = N exp [−∫ dx−,+d2x
ρ̃ap,t(x

−,+,x⊥)ρ̃ap,t(x
−,+,x⊥)

2µ2
p,t(x⊥)

] , (5.12)

have the McLerran-Venugopalan (MV) model [48, 49] form, where N is a normalization
factor. However, unlike the MV model, µ2

p,t(x⊥), the color charge squared per unit area, is
spatially dependent here due to i) the renormalization group (RG) evolution of the color
sources to small Bjorken x for the case of µ2

p [345, 277, 5], and ii) both RG evolution and
fluctuations in the nucleon positions in the target for µ2

t .

dIn the following, for notational simplicity, we will not explicitly write the limits of the momentum
integration arguments.
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Figure 5.6: Comparison of even and odd harmonics measured in p+Pb collisions from ATLAS
improved template fit [8] with the Nch scaling expected in the dilute-dense CGC EFT.

To examine the multiplicity dependence of vn, let us first rescale ρp → cρp, which gives

Ω(k⊥)→ c Ω(k⊥) , (5.13)

in Eq. (5.4). This property is obvious physically because Ω(k⊥) represents the covariant
gauge classical field of the projectile color rotated by the Wilson line of the target. Hence
the “event” multiplicity, for a fixed configuration of ρp, ρt, transforms as

dN

dy
[ρp, ρt]→ c2dN

dy
[ρp, ρt] +O(c3) . (5.14)

The order c3 contribution to the multiplicity is P-odd and will vanish after performing the
ensemble average. The first nontrivial correction is thus of order c4 and can be interpreted
as the first saturation correction from the proton to single inclusive gluon production [82].

The even “single particle” harmonic is invariant under rescaling

Q2n [ρp, ρt]→ c0 Q2n [ρp, ρt] , (5.15)

because both numerator and denominator scale identically. In contrast, the P-odd contribu-
tion appears in the numerator of the odd single particle harmonic, while the normalization
in the denominator is dominated by the P-even leading order piece. One therefore obtains,

Q2n+1 [ρp, ρt]→ c Q2n+1 [ρp, ρt] . (5.16)

Hence these scaling relations Eqs. (5.14)-(5.16) allow us to establish that

Q2n [ρp, ρt] ∝ (dNdy [ρp, ρt])
0

, (5.17)

Q2n+1 [ρp, ρt] ∝

√
dN
dy [ρp, ρt] , (5.18)

and therefore,

v2n{2}∝ N0
ch, v2n+1{2}∝ N

1/2
ch . (5.19)
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This argument is insufficient to fix the coefficients of proportionality. These can however be
fixed by data on even and odd harmonics at a given Nch. In order to do this, we choose
Nch = 218 for all vn. We plot the results of this scaling for the azimuthal Fourier harmonics
v2{2}, v3{2}, v4{2} versus p+Pb ATLAS improved template fit data [8] in Fig. 5.6. We
have checked that the results shown are relatively insensitive to the value of Nch used to
extract the proportionality coefficient for each harmonic. Note that since this template fit
method aims to extract the long-range ridge correlations by cleanly separating them from
dijet contribution, it is ideal for theory to data comparisons.

Remarkably, we find that the anticipated scaling of v2,3,4 with Nch, obtained from the
CGC power counting, is in excellent agreement with the ATLAS data. It is unclear at
present what the corresponding qualitative expectations are in kinetic and hydrodynamic
models for p+A collisions. Studies which include a dense-dense CGC initial state, followed
by hydrodynamic evolution [65], also exhibit relative independence on Nch for v2. However
for v3, they do not see the

√
Nch dependence but a much flatter behavior. This flatter

behavior is also anticipated in the CGC EFT power counting for large Nch because ρp from
the projectile is promoted to a Wilson line U in the dense-dense limit. It is therefore
important to quantify whether the results of [65] are due to the dense-dense IP-Glasma
initial dynamics [5, 349, 62, 329] or whether the later (and relatively short) hydrodynamic
expansion is also essential in p+Pb collisions.

We will now employ the numerical realization of the dilute-dense framework we developed
in the previous section to quantitatively verify whether they corroborate our simple power
counting estimates. The parameters in our study are as follows e. We take the ratio of
the saturation scale to the color charge scale to be Qs/g2µ = 0.5; additionally we take the
fluctuations of the log of this ratio to be σ = 0.5 – this quantity is important to account for
the large color charge fluctuations in rare events. [350]. Additionally, we employ a regulator
mass of m = 0.3 GeV for the gauge fields which enters the Poisson equation relating the
gauge fields in the projectile and target to their respective color charge densities. As in
the previous section, these parameters are determined by minimizing the deviation from
the charged particle multiplicity distribution measured by the ATLAS collaboration [362].
Further, following the lattice prescriptions of [351], we take transverse lattices of size N =

1024 with lattice spacing a = 0.0625 fm, and Ny = 100 rapidity slices in the coordinate x−;
we have verified that the continuum limit is obtained for this parameter set.

The extraction of v4 is especially demanding because very fine lattices are required to
extract a robust fourth harmonic. Our results for the convergence of v4 with increasing
lattice size are shown in Fig. 5.7. These results also suggest that a robust extraction of v4 in
the numerically more intensive dense-dense IP-Glasma [62] framework for small systems is
very challenging with current resources. The numerical extraction of v3 in the dilute-dense
CGC EFT as a function of Nch is even more formidable than that for v2,4. This is evident
from Eq. (5.3) because firstly, an additional ρp and U have to be sampled; further, one needs
to compute an extra momentum integral. For v2,4 one needs approximately 104 color charge
configurations; for v3 it will require at least an order of magnitude more configurations with
each configuration taking N2 times more operations to compute than for v2,4 (due to the
extra momentum integral). This is challenging and outside the scope of the present work.

eSee also [349] for more details on the parameters entering solutions of the QCD Yang-Mills equations.
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Figure 5.7: Lattice size dependence (for a fixed spacing of a = 0.0625 fm) of the average
v4{2} for Nch ≥ 100. Excellent convergence is observed for N ≥ 768 lattice sites.
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Figure 5.8: Comparison of even and odd harmonics measured in p+Pb collisions from ATLAS
improved template fit [8] with the dilute-dense CGC EFT. A 30% systematic uncertainty
band is shown.

Our results for v2,4 as a function of Nch are shown in Fig. 5.8. Unfortunately, the com-
putational effort required limits our ability to go to larger Nch. Within the systematic
uncertainties enumerated below, the agreement of data with the theory is very good. These
uncertainties include the dependence on the regulator mass m and on the ratio Qs/g2µ and
its fluctuations. Our studies varying these quantities suggest that the uncertainties are less
or of order 30%. This is represented by the shaded band around our results; the width
of this band also takes into account our estimates of uncertainties from running coupling
corrections [62] and from the hadronization of gluons [329], which at this point we are not
able to quantify reliably. Some of these uncertainties are somewhat mitigated by the fact
that the vn’s are ratios of weighted multiplicities.

It is natural to ask if the correlations in p+Pb collisions have the same origin as those
measured in peripheral Pb+Pb collisions at the same Nch. The CMS collaboration [297]
observed that the two-particle v3 in p+Pb and Pb+Pb collisions are nearly identical for
the same value of Nch while v2 is larger in the latter system. The IP-Glasma+MUSIC
model [64] (wherein the dense-dense CGC EFT IP-Glasma initial conditions are combined
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with hydrodynamic flow [363]) which does a good job of describing Pb+Pb data for central
collisions out to at least 60% centrality, does a poor job of describing the p+Pb v2,3 data [364].
It was recently shown [65] that including spatial fluctuations of color charge distributions f

in the model has a big effect leading to good agreement with the p+Pb data. The impact
of these studies for peripheral Pb+Pb collisions remains to be quantified. The results of
both [364] and [65] rely on hydrodynamic response to an initial spatial geometry and is
qualitatively different from our effect which results from initial state momentum anisotropies
alone.

Will our dilute-dense framework suffice to describe v2,3 in peripheral Pb+Pb collisions?
Qualitatively, we anticipate that the Nch dependence of v2,3 would be identical for p+Pb
and Pb+Pb for partons in the projectile coherently interacting with multiple localized color
domains of size 1/Qs

g. For the values of Nch studied here, v2 is approximately 25% greater
in Pb+Pb than in p+Pb. We plan to examine whether this difference is captured in quan-
titative studies for Pb+Pb in the dilute-dense and dense-dense frameworks [367]. Alterna-
tively, because the size of the Pb+Pb system is larger, and rescattering is more likely to
occur [355, 77], the breakdown of scaling may affect v2 sooner than it does for v3. Both
of these scenarios for peripheral Pb+Pb collisions, as well as the relative role of initial mo-
mentum anisotropy versus enhanced geometry response from shape fluctuations in p+Pb
collisions, can be quantified within the CGC EFT framework itself and will be reported in
the near future [368].

fThese fluctuations have been argued to be necessary to describe HERA data on incoherent exclusive
J/Ψ production [365, 366].

gInterestingly, similar arguments on universal Nch scaling have been advanced in a kinetic theory pic-
ture [321].
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Chapter 6

Summary and outlook

In this thesis, we have presented original results on a variety of topics related to the dy-
namics of QCD out of equilibrium. In Chapter 2, we showed for the first time that the
pre-equilibrium dynamics of a heavy-ion collisions can produce numerous sphaleron transi-
tions. Additionally, we studied the scaling in time behavior of the characteristic momentum
scales, and determined quantitatively that the sphaleron transition rate is controlled by the
infrared screening scale. These transitions at early times are essential for the emergence
of anomalous transport phenomena like the CME. The search for such effects is currently
ongoing with the IsoBar program at RHIC. If detected, this would be the first experimental
realization of sphaleron transitions, and a direct probe of the infrared dynamics of non-
equilibrium QCD. To gain deeper insights into the real-time dynamics of these sphaleron
transitions, in Chapter 3 we developed novel methods for simulating real-time chiral fermion
production. This allowed us to directly probe the currents and charge production of anoma-
lous transport phenomena using a first-principles framework. In particular we studied the
quark mass dependence and the magnetic field strength dependence, providing insights for
phenomenology and modeling for current and future searches for such effects.

We then considered long-range-in-rapidity correlations in small colliding nuclear systems,
which necessarily probe the initial infrared dynamics of the system. We made use of a proof-
of-principle parton model in Chapter 4 to study up to eight particle correlations in pA
collisions. With this simple model, we were able to calculate a large number of experimental
observables, including up to eight particle Fourier harmonics. This model provides a strong
counterpoint to the conjecture that the multiparticle signatures of collectivity are unique
to hydrodynamic response to initial geometry. Along the way, we developed deeper under-
standing of how such correlations arise in an initial state model; in particular the realization
of how the näıve number of domains scaling for correlations emerges, or is obscured, in such
initial state models. Using this proof of principle model as motivation, in Chapter 5 we
developed a model for initial state correlations based off of the dilute-dense CGC EFT. By
coupling the particle production in the CGC EFT to data-constrained nuclear modeling of
the initial state, we were able to show that the ordering of two-particle correlations between
different small systems recently observed by PHENIX [7] can be understood without hydro-
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dynamic flow. We then applied a simple power counting argument in the dilute-dense CGC
EFT, fortified by numerical calculations, to explain the multiplicity dependence of azimuthal
correlations at the LHC.

Beyond this thesis, a number of timely studies are ongoing or planned. In the study of
sphaleron transitions, work is in progress to understand the impact of longitudinal expansion
and the gauge group dependence on the rate of these transitions [369]. This will be impor-
tant for the interpretation of the results of the current IsoBar program. It is also essential
we understand the real-time production of chiral fermions from these Glasma fields, however
the lattice sizes required are still beyond the scope of what is currently accessible compu-
tationally. In the meantime, we are working on understanding the real-time production of
chiral fermions from non-equilibrium Abelian fields, both for Schwinger pair production [370]
and the chiral plasma instability [371]. These studies will also help us further develop our
numerical techniques, which will enable studies of more systems and with a greater degree of
theoretical accuracy. Because a strongly interacting fluid is generated during a heavy-ion col-
lision, it is also important to understand how chiral charge is transported macroscopically. To
accomplish this, we are employing state-of-the-art magnetohydrodynamic simulations [372],
where we study how chiral charges are transported and how they impact the final hadrons
spectrum [373]. In the future, we plan to perform simulations of chiral resistive magne-
tohydrodynamics, which will allow us to study the full macroscopic real-time dynamics of
anomalous transport. However, this has many theoretical and numerical challenges, but
once accomplished will enable accurate phenomenology for searches for the CME and re-
lated effects, and may also be applicable for studying new settings, including neutron stars
and Dirac and Weyl semi-metals beyond the ballistic regime.

Small systems represent an exciting domain to understand the initial state dynamics,
however a serious quantification of the theoretical uncertainties is necessary. To this end,
we plan to conduct a full study, which includes various levels of approximation of the CGC
EFT (discussed in Section 1.4.1) and the relative effect of a hydrodynamic stage [368]. We
can also look inside our calculations, in hopes of elucidating how different aspects, such
as the nucleon positions, drive the initial state “flow”. This will be addressed in the near
future [367]. We believe that by building off of the work in this thesis, it is possible to
fully quantify the correlations produced in the initial state from the CGC EFT. However,
greater comparison between all theoretical models is needed to elucidate the true origin of the
observed correlations, including the challenging but necessary calculation of higher particle
number correlations as well as newer and perhaps more differential observables. We plan to
actively participate in this mission.

It will also be important to use the methods presented for calculations of initial state
correlations in pA collisions to make predictions for a future Electron Ion Collider (EIC)
facility [374]. If built, an EIC would enable the most detailed study ever into the internal
QCD dynamics of the nucleons which compose the nuclei. At small-x, the EIC will be a
powerful test of the CGC EFT, and if validated, the EIC will likely uncover even richer
features of the CGC EFT, and thus QCD. This is something we plan to vigorously pursue
in the near future.
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Appendix A

Calibrated Cooling

The following appendix is based off of

• M. Mace, S. Schlichting, R. Venugopalan. Off-equilibrium sphaleron transitions in the
Glasma. Phys.Rev. D93, 074036 (2016). Copyright (2016) by the American Physical
Society

We shall describe here further details of our implementation of the “calibrated cooling”
method developed in [149, 151] to measure the Chern-Simons number. We focus on the
aspects relevant to the practical implementation and refer to Sec 2.2.2 for a more general
introduction.

A.1 Cooling

We first perform a cooling of the spatial gauge links Uµ(x, t) at a given real time t by
following the energy gradient flow. We introduce a dimensionless cooling time variable τa2,
which measures the depth of cooling in lattice units and perform a sequence of update steps
of the gauge links according to

Uµ(x, t; τ + δτ) = exp ( − igaEcool
µ (x, t; τ)δτ)Uµ(x, t, τ) , (A.1)

where the “cooling” electric field Ecool
µ associated with the change of the gauge links along

the cooling path is given by

Ecool,a
i (x, t; τ) = (A.2)

−
2

ga3∑
j≠i

ReTr[iτa(U◻
i,j −U

◻
i,−j)(x, t; τ)] ,
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with the elementary plaquettes defined as

U◻
i,j(x) = Ui(x)Uj(x + î)U

†
i (x + ĵ)U

†
j (x) , (A.3)

U◻
i,−j(x) = U †

j (x − ĵ)Ui(x − ĵ)Uj(x + î − ĵ)U
†
i (x) ,

U◻
−i,j(x) = Uj(x)U

†
i (x + ĵ − î)U

†
j (x − î)Ui(x − î) ,

U◻
−i,−j(x) = U †

i (x − î)U
†
j (x − î − ĵ)Ui(x − î − ĵ)Uj(x − ĵ) .

We use a cooling step size of δτ = a2/8 and repeat the update in Eq. (A.1) until reaching the
desired cooling depth τc. During the course of the real time evolution, the cooling process is
repeated after each t = a/2. Based on the cooled copies Uµ(x, t1; τc) and Uµ(x, t2; τc) of the
original gauge field configurations at two adjacent times t1 and t2 (see Fig. (2.2)) we then
compute the change in the Chern-Simons number as detailed below.

A.2 Chern-Simons number

Since we only perform cooling of the spatial gauge links, we first need to re-construct the
connection between the cooled configurations Uµ(x, t1; τc) and Uµ(x, t2; τc) to evaluate the
Chern-Simons current. Because the topology measurement does not rely on the exact path
connecting the two configurations we do so by simply performing a smooth interpolation
between the starting point Uµ(x, t1; τc) and end point Uµ(x, t2; τc). Explicitly, we choose the
cooled analogue of the color electric field

Et1→t2
i (x; τc) =

i

ga(t2 − t1)
Log[Ui(x, t2; τc)U

†
i (x, t1; τc)]

(A.4)

to be constant between the two adjacent times such that for t1 ≤ t ≤ t2 the gauge links follow
the trajectory

Uµ(x, t1 ≤ t ≤ t2; τc) = (A.5)

exp ( − igaEt1→t2
i (x; τc)(t − t1))Uµ(x, t1; τc) .

We then compute the change in Chern-Simons number between the two configurations by
evaluating the space time integral of the Chern-Simons current

N τc
CS(t2) −N

τc
CS(t1) =

g2a3(t2 − t1)

8π2 ∑
x

Et1→t2
i,imp (x; τc)

Bimp
i (x, t1; τc) + 4Bimp

i (x, tmid; τc) +B
imp
i (x, t2; τc)

6
(A.6)

where in order to improve the accuracy of the integral over time we construct the magnetic
fields at the mid-point tmid = (t1+t2)/2 from Eq. (A.5) and use Simpson’s rule to approximate
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the integral. Similarly, we use an O(a2) improved definition of the color electric and color
magnetic fields [150], where the electric fields are locally determined at each lattice point
according to

Ea
i,imp(x) = −

1

12
Uab
i (x)Eb

i (x + î) +
7

12
U †,ab
i (x − î)Eb

i (x − î)

+
7

12
Ea
i (x) −

1

12
U †,ab
i (x − î)U †,bc

i (x − 2̂i)Ec
i (x − 2̂i) . (A.7)

Here Uab = 2 tr[taUtbU †] denote the adjoint parallel transporters. Similarly, the magnetic
fields are constructed from a combination of the four elementary (1x1) plaquettes in Eq. (A.3)
and the eight adjacent rectangular (2x1) plaquettes according to

Ba
i,imp(x) =

εijk

ga2
ReTr (iτa[

5

3
∑
4◻
U◻
±j,±k(x) (A.8)

−
1

3
∑
8

U±j,±k(x)]),

with the different lattice operators illustrated in Fig. A.1.

A.3 Calibration

While the successive application of Eq. (A.6) allows us to follow the change of the Chern-
Simons number over the course of the real time evolution, it is useful in this process to
re-calibrate the measurement occasionally to ensure that residual errors do not accumulate
over time. As illustrated in Figure 2.2, we perform additional calibration steps where we cool
from τc all the way to the vacuum. Since the Chern-Simons number of the associated vacuum
configuration is always an integer, we can get an independent estimate of the Chern-Simons
number N τc

CS(t) of the cooled configuration according to

N τc,calib
CS (t) = N vac

CS (t) −∆N coolingpath
CS (t) , (A.9)

which can used to re-calibrate the measurement. Here ∆N coolingpath
CS (t) denotes the change

of difference in Chern-Simons number computed along the cooling path from τ = τc to the
vacuum (τ →∞)

∆N coolingpath
CS (t) = (A.10)

g2a3

8π2 ∫

∞

τc
dτ∑

x

Ecool,a
i (x, t; τ)Bcool,a

i (x, t; τ) .

Since cooling all the way to the vacuum is computationally expensive, we follow earlier works
and use blocking to reduce the numerical cost of the calibration procedure. Each time block-
ing is performed, neighboring sets of gauge links are combined into new “blocked” links as
illustrated in Fig A.2, which reduces the size of the lattice by a factor of 23. Since the effec-
tive step width δτ of the cooling can also be increased by a factor of 22 after blocking, the
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Figure A.1: Illustration of elementary square plaquettes (left) and rectangular plaquettes
(right) employed in the computation of the magnetic field strength.

Figure A.2: Illustration of blocking procedure used only during the calibration step. A
subset of the original gauge links represented by solid black lines is combined into a coarser
lattice of green links.

numerical benefit is enormous and we have used up to two levels of blocking when performing
calibration on our largest lattices. When sufficient cooling τa2 ≳ 1 is performed before each
level of blocking we find that the error introduced in the computation of ∆N coolingpath

CS (t) due
to blocking can be kept below the 1% percent level.

By combining the results ∆N coolingpath
CS (t1) and ∆N coolingpath

CS (t2) of consecutive calibra-
tions with the measurement of the Chern-Simons number difference N τc

CS(t2) −N
τc
CS(t1) at

the original cooling depth in Eq. (A.6), one can form a trajectory in configuration space
which connects the vacuum configurations at t1 and t2 such that

N vac
CS (t2) −N

vac
CS (t1) = −∆N coolingpath

CS (t1) (A.11)

+N τc
CS(t2) −N

τc
CS(t1) +∆N coolingpath

CS (t2) .

Because the difference in Chern-Simons number of two vacuum configurations N vac
CS (t1) −

N vac
CS (t2) on the left hand side is supposed to be an integer, this procedure allows for an
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Figure A.3: Space-time integral of the Chern-Simons current computed along a path con-
necting two vacuum configurations according to the right hand side of Eq. (A.11). Data
obtained for a single N = 96, Qsa = 1 non-equilibrium configuration.

explicit check of whether the lattice definition of the Chern-Simons current indeed behaves
as a total derivative. When evaluating the right hand side of Eq. (A.11), we find that the
deviation from integer values is typically less than 2 %. An example of this calibration check is
shown Figure A.3, where we plot the values obtained for the right hand side of Eq. (A.11) over
the coarse of the non-equilibrium evolution of a single configuration. Excellent agreement
with integers can be observed, demonstrating that the measurement is indeed topological.
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Appendix B

Slave Field Method

The following appendix is based off of

• M. Mace, S. Schlichting, R. Venugopalan. Off-equilibrium sphaleron transitions in the
Glasma. Phys.Rev. D93, 074036 (2016). Copyright (2016) by the American Physical
Society

We will describe in this appendix the implementation of the slave field method [3]. As
discussed in Sec. 2.2.2, it provides an alternative measurement of the integer (topological)
part of the Chern-Simons number. The basic philosophy underlying the slave field method is
to identify the topological component of the Chern-Simons number with the winding number
of the gauge transformation to the topologically trivial sector. The challenge for this method
however is to find this gauge transformation at every instance of time and ensure that it is
sufficiently slowly varying to allow for a reliable extraction of the winding number.

B.1 Initialization & Slave field dynamics

When performing a slave field measurement, we perform an initial gauge fixing to set the dy-
namical gauge links and electric field variables such that they satisfy the (minimal) Coulomb
gauge condition at initial time t = 0. Since after the gauge fixing the configuration is topo-
logically trivial, the initial condition for the slave field then simply becomes S(x) = 1. Over
the course of the real time evolution of the configuration the Coulomb gauge condition will
be violated and one needs to update the slave field to dynamically keep track of the trans-
formation back to Coulomb gauge. We follow the original reference [3] and use an update
algorithm based on local lattice gauge fixing techniques to maximize the gauge fixing func-
tional ∑x∑i ReTr w(x, t + δt) where

w(x, t + δt) = S(x, t + δt)∑
i

(Ui(x, t + δt)S
†(x + î, t + δt)

+U †
i (x − î, t + δt)S

†(x − î, t + δt)) , (B.1)
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Starting from an initial guess Sinit(x, t+ δt) for the slave field S(x, t+ δt), we perform Nsteps

update steps of the Los Alamos gauge fixing algorithm, setting [375]

S(x, t + δt)→ Snew(x, t + δt) = w̃†(x, t)S(x, t + δt) ,

(B.2)

in each step, where w(x, t) is determined from the slave field in the previous step and w̃
denotes the projection of w to SU(Nc), which in the SU(2) case simply takes the form

w̃ = w/
√
det(w).

In order to minimize the number of gauge fixing steps needed to reach acceptable gauge
fixing precision, we follow [3] and try to take advantage of the previous update, by setting

Sinit(x, t + δt) = (S(x, t)S†(x, t − δt))mS(x, t) (B.3)

with m = 1 − δt/a as our initial guess for the slave field, except when the previous step was
so large that ReTr(1 − S(x, t)S†(x, t − δt)) > 2(1 −m)2 where we use Sinit(x, t + δt) = S(x, t)
instead. However when the peak-stress

PS(t) = max
x

(3Nc −
1

2
ReTr w(x, t)). (B.4)

of the previous slave field configuration is above our tolerance PS(t) > PSmax, we use m =

(1−δt/a)3 instead of the above and triple the number of gauge fixing steps Nsteps. We found
that for the small lattices used in our study of the thermal case, we achieve an accurate
tracking of the gauge transformation with Nsteps = 5 and PSmax = 1.2. However for the
larger lattices used in our non-equilibrium study, the local gauge fixing algorithm becomes
inefficient and a much larger number of steps is needed. Unfortunately this makes the slave
field method computationally too expensive to be of practical use when studying a large
number of configurations on large lattices.

Even though the update described above is sufficient to determine the evolution of the
slave field, it does not necessarily ensure that (over the course of the real time evolution)
the slave field remains sufficiently slowly varying to reliably determine its winding number.
However, as pointed out in [3], the smoothness of the slave field can be restored by performing
the actual gauge transformation back to Coulomb gauge

Ui(x)→ U
(S)
i (x) , Ei(x)→ E

(S)
i (x) , S(x)→ 1 ,

(B.5)

when the peak stress is sufficiently small PS(t) < PSmax. In practice, we check after every
fifth time step whether this criterion is satisfied and eventually perform the transformation.
We also note that, since performing the gauge transformation removes a possible winding,
we have to add the winding number of the gauge transformation S(x, t) to all subsequent
measurements of the winding number. When the slave field is sufficiently slowly varying, it
is then straightforward to determine its winding number using the methodology described
in [178, 3].
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Appendix C

Eigenmodes of the Dirac Hamiltonian
in the helicity basis

The following appendix is based off of

• M. Mace, N. Mueller, S. Schlichting, S. Sharma. Non-equilibrium study of the Chiral
Magnetic Effect from real-time simulations with dynamical fermions. Phys. Rev. D
95, 036023 (2017). Copyright (2017) by the American Physical Society

In this appendix we derive the eigenmodes for non-interacting fermions in the helicity
basis by diagonalizing the Dirac Hamiltonian for Wilson and overlap fermions.

We begin by taking the gamma matrices in the Dirac representation. In the absence
of gauge fields (U = 1) the eigenfunctions of the Wilson and overlap Dirac equation can
be written in the plane wave basis. The spatial momenta and effective mass term for the
improved Wilson fermions in this basis are

pwi = ∑
n

Cn
as

sin(nasqi)

mw
eff = m +∑

n,i

2nCn
as

rwsin2(
naqi

2
) (C.1)

and similarly for massless overlap fermionsa

povi = M
pwi
s

mov
eff = M (1 +

p5

s
) (C.2)

aFor overlap, we always take rw = 1 and the Wilson improvement coefficients C1 = 1,Cn = 0 for n > 1.
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where

qi =
2πni
asNi

, ni ∈ 0, ...,Ni − 1

p5 = −M +∑
i

2

as
sin2(

asqi
2

)

s =
√

∑
i

p2
i + p

2
5. (C.3)

With this notation, the eigenvalue problem takes the same form for either discretization;
we will we drop the superscript differentiating the two since everything that follows applies
equally to both cases. The Hamiltonian in this basis is then

H = (
meff12 σ⃗ ⋅ p⃗
σ⃗ ⋅ p⃗ −meff12

) , (C.4)

which has eigenvalues E± = ±
√
m2

eff + p⃗
2, where the positive (negative) eigenvalues corre-

sponds to (anti) particles. The corresponding eigenvectors are given as

uh(p) =
E+ −meff

√
(E+ −meff)

2 + p2
(

φ(h)(p)

hE+−meff

∣p∣ φ(h)(p)
)

vh(p) =
E− −meff

√
(E− −meff)

2 + p2
(

φ(h)(−p)

hE−−meff

∣p∣ φ(h)(−p).
) , (C.5)

Since the Hamiltonian, Eq. (C.4), commutes the helicity operator, the eigenvectors of the
Hamiltonian are simultaneously eigenvectors of the helicity operator. We then choose φ to
be normalized with respect to helicity p⃗⋅σ⃗

∣p⃗∣ , so the index h is the helicity and takes values

h = ±1. Now we solve for the φ. First, if (px, py) ∈ {0,Nx/2} × {0,Ny/2}, then

φ+(p) = (1,0)T (C.6)

φ−(p) = (0,1)T (C.7)

otherwise

φh(p) =
1

√

1 + (pz−h∣p⃗∣)
2

p2
x+p2

y

⎛

⎝

1

−
pz−h

√
p2
x+p2

y+p2
z

px−ipy

⎞

⎠
(C.8)

For the case (px, py, pz) ∈ {0,Nx/2}×{0,Ny/2}×{0,Nz/2}, where the linear momentum term
vanishes, for meff > 0

uh(p) = (
φh(0)

0
) , vh(p) = (

0
φh(0)

) , (C.9)

while for meff < 0 we have

uh(p) = (
0

φh(0)
) , vh(p) = (

φh(0)
0

) . (C.10)

138



While this is most obvious in the last case, the orthogonality conditions

u†
q,λuq,λ′ = δλ,λ′ (C.11)

v†
q,λvq,λ′ = δλ,λ′ (C.12)

u†
q,λvq,λ′ = v

†
q,λuq,λ′ = 0 (C.13)

are held for all eigenvectors. We have now constructed the helicity eigenmodes for the free
Wilson and overlap Dirac Hamiltonian.

139



Appendix D

Derivation of the Minkowski overlap
Hamiltonian

The following appendix is based off of

• M. Mace, N. Mueller, S. Schlichting, S. Sharma. Non-equilibrium study of the Chiral
Magnetic Effect from real-time simulations with dynamical fermions. Phys. Rev. D
95, 036023 (2017). Copyright (2017) by the American Physical Society

In this appendix, we outline our construction of the overlap Hamiltonian in 3+1D
Minkowski spacetime, applicable for real-time lattice gauge theory simulations. The spa-
tial overlap operator for one massless quark flavor is defined as

−i /Dov = M(1 + γ5
Q

√
Q2

), (D.1)

where a suitable choice of the kernel Q is

Q ≡ γ5 /DW (M), (D.2)

with −i /DW (M) being the massless Wilson Dirac operator in 3+1D Minkowski spacetime.
Here the parameter M ∈ [0,2) can be interpreted as the height of the domain wall or the
defect that localizes the chiral fermions on 4D Euclidean spacetime starting from a 5D
domain wall formalism [34].

In order to derive the real-time evolution of fermion modes ψ with mass m = 0 and at
any instant of time t, we solve the overlap Dirac equation on the lattice, −i /Dovψ = 0, where

−i /Dovψ = M[1 +
−i /DW (M)

√
γ5(−i /DW (M))γ5(−i /DW (M))

]ψ

(D.3)

In the temporal gauge and furthermore choosing the lattice spacing along temporal direction
to be fine enough than the other relevant scales in the operator, such that at ≪ M,as, the
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dimensionless overlap operator is simply

−i /Dov =M[1 +
−i /D

s
W − iat /∂t −M

√

/D
s
W /D

s†
W + a2

t∂
2
t +M

2

] . (D.4)

If we perform an expansion in powers of at and keep terms which are leading order in at, we
get the RHS of Eq. (D.4) to be,

M[1 +
−i /D

s
W −M

√

/D
s
W /D

s†
W +M2

+
−iat /∂t

√

/D
s
W /D

s†
W +M2

] (D.5)

In the denominator of the second term of Eq. (D.5), the domain-wall height scales as 1/as,
whereas the spatial Wilson-Dirac operator scales as linear power in as, therefore the overlap
operator in Eq. (D.5) simply reduces to

−i /Dov = −iat /∂t +M[1 +
−i /D

s
W −M

√

/D
s
W /D

s†
W +M2

] (D.6)

The overlap Dirac equation in Eq. (D.3) can be then simply written as a time evolution
equation of the form,

iγ0∂tψ = −i /D
s
ovψ (D.7)

where −i /D
s
ov is the spatial overlap operator given by

−i /D
s
ov = M[1 +

−i /D
s
W (M)

√
γ5(−i /D

s
W (M))γ5(−i /D

s
W (M))

].

(D.8)

Eq. (D.7) is the analogue of the corresponding evolution equation with Wilson fermion
discretization given in Eq. (3.5). Using γ5 and γ0 hermiticity of −i /D

s
W , we can recast Eq. (D.7)

as a Hamiltonian equation with the overlap Hamiltonian in 3D Minkowski space for massless
fermions defined as,

Hov = −iγ0 /D
s
ov = M(γ0 +

HW (M)
√
HW (M)2

), (D.9)

where HW is the Wilson Hamiltonian defined in Eq. (3.1) but with Cn = 0 for n ≥ 2 and the
mass m being replaced by the negative of the domain wall height M .
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Appendix E

Convergence study of net axial charge
for Wilson and Overlap fermions

The following appendix is based off of

• M. Mace, N. Mueller, S. Schlichting, S. Sharma. Non-equilibrium study of the Chiral
Magnetic Effect from real-time simulations with dynamical fermions. Phys. Rev. D
95, 036023 (2017). Copyright (2017) by the American Physical Society

In this appendix we will discuss finite size effects and convergence of our Wilson (see
Sec. 3.1.1) and overlap (see Sec. 3.1.2) lattice fermions, as well as compare the properties of
two fermion discretizations. In order to be able to concentrate on the chiral properties of
the fermions as a function of volume, improvement, and discretization, we will only consider
the single sphaleron transition introduced in Sec. 3.1.3. We keep rsph/a = 6 fixed for all
simulations and consider only isotropic lattices in this section, and will keep the Wilson r-
parameter fixed at rw = 1 for all comparisons. In this section we work in the nearly massless
limit for the Wilson fermions (mrsph = 1.9 ⋅ 10−2) and the massless limit for overlap fermions,
so the integrated anomaly equation reduces to Eq. (3.39). We have previously shown for
Wilson fermions how both the unintegrated (see Fig. 3.3) and integrated (Figure 3 in [225])
anomaly equation are maintained as a function of mass. For the Wilson fermions, we first
pick a volume, N3 = 163, and study the total axial charge created as a function of time
for various levels of operator improvement, as was discussed in Sec. 3.1.1. This is plotted
in Fig. E.1. We can clearly see that at Leading Order (LO), the standard unimproved
Wilson fermion formulation, there is significant deviation, at the 25% level, from the Chern
Simons term −2∆NCS, which is quantified in the lower panel of Fig. E.1. However, upon
going to one level of improvement, Next to Leading Order improvement (NLO), we see that
this disagreement disappears. At Next to Next to Leading Order (NNLO) improvement,
we see no noticeable difference from NLO, and thus see that our improvement scheme has
converged. In practice, we find that in all cases in our current study, NLO is sufficient and
nothing additional is gained by going to NNLO.

Now we need to understand how important finite volume effects are in our study. This
is shown in Fig. E.2. Here we look at the axial charge generated by NLO improved Wilson
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Figure E.1: A comparison of the net axial charge generated during a sphaleron transition
for a fixed volume of N = 16 using mrsph = 1.9 ⋅ 10−2 Wilson fermions with different operator
improvements. Top: Already at NLO we see that the net axial charge tracks ∆NCS due to
the sphaleron transition. Bottom: Deviations from Eq. (3.39) are shown.
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Figure E.2: A comparison of the net axial charge generated during a sphaleron transition
using mrsph = 1.9 ⋅ 10−2 improved Wilson (NLO) fermions for different lattice volumes. Top:
At N=16 and beyond the net axial charge tracks ∆NCS due to the sphaleron transition.
Bottom: Deviations from Eq. (3.39) are shown.
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Figure E.3: A comparison of the net axial charge generated during a sphaleron transition
using massless overlap fermions for different domain wall heights M at a fixed lattice volume
N = 16. Top: For M ∈ [1.4,1.6), the net axial charge tracks ∆NCS due to the sphaleron
transition. Bottom: Deviations from Eq. (3.39) are shown.

fermions for three volumes. It is clear from the lower panel of Fig. E.2 that for N = 12 =

2rsph/a, there are clear finite volume effects that lead to large oscillations of the J0
a around

the sphaleron transition from Eq. (3.39). This is then subsequently improved by going to
a volume N = 16 = 2.67rsph/a, where we can see noticeable improvement. To test this
convergence, we further look at N = 32 = 5.34rsph/a; here we see that there is no difference in
the average deviations from the Chern-Simons term as compared to the N = 16 = 2.67rsph/a.

However, we should note that this is only for resolving the creation of axial charge from
a single localized sphaleron transition. To look at charge transport as a function of time,
like we studied in Sec 3.3, we need even larger volumes, especially in the magnetic field
direction. Typically we choose a spatially anisotropic lattice, where the transverse length
is Ntrans ≥ 2rsph/a, while along the direction of the magnetic field Nz ≫ 2rsph/a (a typical
choice is N3 = 162 ×32−242 ×64). Moreover, the transverse size of the lattice has to be large
enough to accommodate the cyclotron orbits of charged particles. In practice this constraint
limits the available magnetic field strength to larger magnetic flux quanta.

Next, for the overlap fermions, we proceed in the same manner. Instead of improving the
Wilson kernel, we vary the domain wall height M for a fixed isotropic lattice N = 16. As we
see in Fig. E.3, values in the range of M ∈ [1.4,1.6) give the best results; we choose M = 1.5.
We have verified that the volume dependence of the currents for the overlap is similar to the
Wilson fermions with NLO improvement, which is evident from Fig. 3.1.

In summary, for Wilson fermions, NLO improvement is necessary and sufficient to accu-
rately reproduce the anomaly. At this level, we find that it gives comparable results to the
overlap fermions, which we find that for a well tuned domain wall mass M we can reproduce
the anomaly relation even on reasonably small lattices. Additionally, we find that for spatial
lattice sizes of N = 2 rsph/a, finite volume effects are somewhat noticeable, but seem to be
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completely under control for lattice size N > 2rsph/a. This will serve also as crucial input for
how fine to make one’s lattice for future studies with more realistic gauge field configurations,
where the size sphalerons is set by physical scales of the problem.
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Appendix F

Construction of topologically
non-trivial lattice map

The following appendix is based off of

• M. Mace, N. Mueller, S. Schlichting, S. Sharma. Non-equilibrium study of the Chiral
Magnetic Effect from real-time simulations with dynamical fermions. Phys. Rev. D
95, 036023 (2017). Copyright (2017) by the American Physical Society

Below we describe the construction of a topologically non-trivial gauge transformation,
employed in Sec. 3.1.3 for the construction of our handmade sphaleron transition. We first
note that in the continuum, gauge transformations G ∶ R3∪{∞}→ SU(2) ≃ S3 parametrized
according to

Gx = α0(x)1 + iα
a(x)σa, α2

0 + α
2 = 1 . (F.1)

where a = 1,⋯,3 and α2 = αaαa can be classified according to the homotopy classes π3(R3 ∪

{∞}) ≃ Z characterized by the topological winding number or Brouwer degree deg(G) of
the map. Even though on a lattice with periodic boundary conditions the corresponding
map is from the three torus T3 to the gauge group, the homotopy classes π3(R3 ∪ {∞}) ≃ Z
and π3(T3) ≃ Z are identical and the same classification scheme applies. Our strategy to
construct a topologically non-trivial lattice map is to perform a multi-step mapping; first
from the set of lattice points to the three torus, then to one-point compactified real space,
and finally to the gauge group, such that

x→ xT → xR → α (F.2)

with x ∈ {0,⋯,Nx − 1} × {0,⋯,Ny − 1} × {0,⋯,Nz − 1}, xT ∈ T 3, xR ∈ R3 ∪ {∞} and α ∈

S3 ≃ SU(2). Since we wish to obtain a non-trivial result (Gx ≠ 1) only on a characteristic
scale rsph around the center (x, y, z) = (Nx/2,Ny/2,Nz/2), we perform a distorted map of
the lattice points to real space, given explicitly by the following steps

xiT = 2π
arctan (

xi−N i/2
rsph

) − arctan (
−N i/2
rsph

)

arctan (
N i/2
rsph

) − arctan (
−N i/2
rsph

)
, (F.3)
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where the denominator explicitly ensures a smooth profile at the periodic edges, and subse-
quently

xiR = tan [
1

2
(xiT − π)] , (F.4)

which identifies a unique point in R3 ∪ {∞} with each lattice site. Since, in order to ensure
that the final map between R3 ∪ {∞} and α ∈ S3 ≃ SU(2) has a non-vanishing degree, it is
sufficient to require the map to be surjective; we simply choose the final mapping to be given
by a stereographic projection, such that

α0 =
x2
R − 1

x2
R + 1

αa = (α0 − 1) ⋅ xiRδ
ia. (F.5)

Based on the explicit formula for the Brouwer degree, it is straightforward to verify that this
map has topological winding number equal to unity.
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Appendix G

Glasma graph approximation

The following appendix is based off of

• K. Dusling, M. Mace, R. Venugopalan. Parton model description of multiparticle az-
imuthal correlations in pA collisions. Phys. Rev. D 97, 016014 (2018); arXiv:1706.06260
[hep-ph]. Copyright (2017) by the American Physical Society

In this section, we show how our present calculation fundamentally differs from the so-
called “Glasma graph” result [83, 270, 84, 85, 86, 87, 88]. The Glasma graph approximation
is constructed by considering all possible two-gluon exchanges between quarks comprising
the projectile and the target nucleus under the assumption of Gaussian statistics. The
expectation value of n-Wilson lines in the Glasma graph approximation can be evaluated by
expanding the path ordered exponential of the Wilson line to order n in the coupling constant.
The resulting expectation value of gauge fields are then evaluated by re-expressing higher
order expectation values as a product of two-point functions. This procedure was followed
in [268] in order to evaluate the dipole-dipole correlator in the Glasma graph approximation.
Here we extend the derivation and results of [268] to higher order correlators but taking a
more diagrammatic approach.

Diagrammatically, the Glasma graph approximation amounts to replacing each two-gluon
exchange with the expectation value of a single dipole operator. For example, for single quark
scattering we find the relation of Fig. G.1. While the tadpole terms are explicitly shown

x x̄ x x̄+ x x̄+ = D(x− y)

Figure G.1: Single quark multiple-scattering off the target nucleus.

in the single scattering case in Fig. G.1, for higher point functions diagrams containing two
gluons on the same quark are power suppressed by either k⊥/Qs ≪ 1 or 1/ (BQ2

s) ≪ 1. (A line
containing two quarks on opposite sides of the cut – corresponding to a gluon connecting
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a quark with its conjugate amplitude at a different coordinate – are not suppressed and
therefore included in what follows.) While these additional terms are formally higher order
and will be ignored in the discussion to follow we should point out that they were found to
be important in obtaining a quantitative agreement with experiment [85].

x x̄
y ȳ

x x̄
y ȳ

x x̄
y ȳ

Figure G.2: The three diagrams for two quarks scattering in the Glasma graph approxima-
tion. The leftmost diagram is a disconnected contribution and equivalent to the square of
single quark scattering.

One can generate all possible Glasma graphs by starting with the completely disconnected
diagram whereby each quark multiple-scatters independently off the target. We show an
example of this completely disconnected contribution for two quark scattering as the left
most diagram of Fig. G.2.

Further diagrams are generated by finding unique exchanges of coordinates (exchanging
two gluon endpoints) along with an accompanying (N2

c − 1) suppression for each exchange.
There are two unique topologies for two quark scattering as shown in Fig. G.2. The result-
ing expression for the Glasma graph approximation to the expectation value of two dipole
operators is therefore

⟨D(x, x̄)D(y, ȳ)⟩ = D(x, x̄)D(y, ȳ) (G.1)

+
1

(N2
c − 1)

[D(x̄ − y)D(x − ȳ) +D(x̄ − ȳ)D(x − y)] .

Higher point correlators can be found in a similar fashion. For n quarks there are (n−1)!! ≡
n(n − 2)⋯3 ⋅ 1 diagrams resulting from all possible unique contractions between quark lines.
For a correlation among six Wilson lines there are 5 ⋅ 3 ⋅ 1 = 15 pair-wise contractions while
for a correlator among eight Wilson lines there are 7 ⋅ 5 ⋅ 3 ⋅ 1 = 105 pair wise contractions.

As an aside, we remind the reader that the combinatorics discussed above are relevant
for a dilute-dense framework. A Glasma graph approximation has also been employed in the
dense-dense limit which was shown to have (n − 1)!!2 diagrams for n-gluon production. In
the dense-dense limit there would be 152 = 225 and 1052 = 11025 diagrams for the six- and
eight-point functions respectively as shown previously in [376] and [323].

We now come to the expectation value of four dipoles in the Glasma graph calculation
following the procedure outlined above. The starting point is the completely disconnected
contribution where each of the four quarks scatter independently as shown in the left diagram
in Fig. G.3.

Starting from the disconnected diagram there are 12 unique coordinate exchanges that
can be made. One example is shown in the right diagram of Fig. G.3 where the coordinates
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w w̄

x x̄
y ȳ

z z̄

w w̄

x x̄
y ȳ

z z̄

Figure G.3: Left: Completely disconnected Glasma graph for four-quark scattering. Right:
Example of one of the 12 diagrams contained within T1 obtained from an exchange of one
pair of coordinates – in this case x̄ and w̄.

w w̄

x x̄
y ȳ

z z̄

w w̄

x x̄
y ȳ

z z̄

Figure G.4: The diagram on the left is an example of one of 32 diagrams where three-quarks
are completely connected and one scatters independently – in this case the quark at x. The
diagram on the right shows one of 12 diagrams which factorizes into two two-dipole connected
subgraphs.

x̄ and w̄ have been swapped. These 12 diagrams resulting from a single coordinate exchange
results in a contribution of (N2

c − 1)
−1
T1 where

T1 =D(w, x̄)D(x, w̄)D(y, ȳ)D(z, z̄) +⋯ . (G.2)

We next consider diagrams resulting from unique and non-trivial two coordinate ex-
changes. There are two classes of diagrams which enter at this order. The first is shown
in the left diagram of Fig. G.4. The diagram factorizes into two sub-graphs, one being a
completely connected three-quark scattering and the other a single independent quark scat-
tering. There are 32 such diagrams which will contribute with a factor of (N2

c − 1)
−2
T2a

where

T2a = D(w, ȳ)D(x, w̄)D(y, x̄)D(z, z̄) +⋯ . (G.3)

The second class of diagram is shown in the right of Fig. G.4. It again factorizes into two
sub-graphs but in this case each sub-graph is a completely connected two-quark scattering
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w w̄

x x̄
y ȳ

z z̄

Figure G.5: One of the 48 diagrams completely connected four-quark diagrams included in
T3.

event (i.e. one of the two connected graphs shown in Fig. G.2). There are 12 such diagrams
which will contribute as (N2

c − 1)
−2
T2b where

T2b = D(w, z̄)D(z, w̄)D(x, ȳ)D(y, x̄) +⋯ (G.4)

The last set of diagrams correspond to those obtained by three unique and non-trivial
coordinate exchanges. An example of such a diagram is shown in Fig. G.5. There are 48
such diagrams which contribute as (N2

c − 1)
−3
T3 where

T3 =D(w, ȳ)D(z, w̄)D(x, z̄)D(y, x̄) +⋯ (G.5)

Putting all of the diagrams together, we arrive at the final expression for the expectation
value of four dipoles in the Glasma graph approximation,

⟨D(w, w̄)D(x, x̄)D(y, ȳ)D(z, z̄)⟩ = D(w, w̄)D(x, x̄)D(y, ȳ)D(z, z̄)

+
1

(N2
c − 1)

T1(w, w̄,x, x̄,y, ȳ,z, z̄)

+
1

(N2
c − 1)

2T2a(w, w̄,x, x̄,y, ȳ,z, z̄)

+
1

(N2
c − 1)

2T2b(w, w̄,x, x̄,y, ȳ,z, z̄)

+
1

(N2
c − 1)

3T3(w, w̄,x, x̄,y, ȳ,z, z̄) .

(G.6)

We now come to the evaluation of the four-particle cumulant using the above Glasma
graph approximation in the four-particle inclusive distribution, where the four-particle cu-
mulant is defined in Eq. (4.40). The Glasma graph approximation implicitly assumes that
(BQ2

s) ≫ 1 and one must take this power counting into consideration when taking the ratios
in the above expression for the cumulants. In order to see this more clearly let us start with
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the expression for the double inclusive distribution,

d2N

d2p1 d2p2

=
1

(πBp)
2

1

(2π)4 ∫r1r2R1R2

eip1⋅r1eip2⋅r2e−r
2
1/4Bpe−R

2
1/Bpe−r

2
2/4Bpe−R

2
2/Bp

⋅ ⟨D (R1 +
r1

2
,R1 −

r1

2
)D (R2 +

r2

2
,R2 −

r2

2
)⟩ . (G.7)

We can evaluate the single inclusive multiplicity by integrating over d2p1 and d2p2 resulting
in

N =
1

(πBp)
2 ∫R1R2

⟨D (R1,R1)D (R2,R2)⟩ e
−R2

1/Bpe−R
2
2/Bp . (G.8)

In the full nonlinear theory (without approximation) we know that

⟨D (R1,R1)D (R2,R2)⟩ = 1 (G.9)

and therefore N = 1. However, in the Glasma graph approximation the dipole-dipole corre-
lator is replaced by Eq. (G.2) resulting in the following expression for the total multiplicity,

N = 1 +
2

(N2
c − 1)(πBp)

2 ∫R1R2

D (R1 −R2)
2
e−R

2
1/Bpe−R

2
2/Bp

= 1 +
2

(N2
c − 1)

1

BpQ2 + 1
, (G.10)

violating unitarity by a term of order 1/ (BQ2
s) ≪ 1. When evaluating the cumulant in

Eq. (4.40) one should formally only keep the leading order terms in 1/ (BQ2
s). In practice this

means retaining only the leading disconnected contribution in the two terms κ0{4} and κ0{2}
appearing in the denominators; these terms were defined in Eq. (4.41). For consistency within
the Glasma graph approximation we should therefore take κ0{4} = (κ0{2})

2
= (κ0{1})

4
where

κ0{1} is just the single-inclusive distribution.
Now coming to the numerator, due to rotational invariance T1 and T2a do not contribute

to κ2{4}. Out of the twelve diagrams in T2b four vanish by rotational invariance and the
remaining eight cancel with the term 2 (κ2{2}/κ0{2})2. So within the Glasma graph ap-
proximation the cumulant can be evaluated using

c2{4} =
κ2{4} [T3]

κ0{1}4
, (G.11)

where κ2{4} is evaluated using the 48 diagrams contained within T3. With this, we compare
this Glasma graph result with the full non-linear result introduced in Sec. 4.3 in Fig. 4.18 in
the main text, with accompanying discussion in Sec. 4.5.4.
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