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In this thesis we use results on extraterrestrial neutrinos from
the Sun, from extragalactic objects and from the Early Universe
to study several problems related to the characterization of their
sources and their interactions. First we present an updated deter-
mination of the fluxes of neutrinos produced in the Sun and the
construction of a new generation of Standard Solar Models. Moti-
vated by the inconsistency between the prediction of these models
and the global analysis of data from solar neutrino experiments
and helioseismology, we study how to use that data to improve on
the solar modeling. Next we describe and quantify how the flavor
content of the detected high energy neutrinos from extragalactic
sources, which is being used to characterize their production mech-
anism at the source, can be modified by non-standard interactions
of the neutrinos with the Earth matter. Lastly we study the tension
between sterile neutrinos as suggested by short baseline oscillation
anomalies and cosmological observations. To alleviate those we in-
troduce new interactions among sterile neutrinos and present the
constraints on this new interaction imposed by cosmological data.
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Chapter 1

Introduction

Neutrinos are ubiquitous in Nature. They were produced in the early uni-
verse, they are generated by the reactions that make the stars shine, by the
interactions of cosmic rays – in particular with our atmosphere –, by radioac-
tivity in our Earth . . . . To these “natural” neutrinos we have to add those
generated by human constructions, including nuclear reactors and accelerators.
Since the first observation of neutrinos in 1956, tremendous experimental ef-
forts have been made to detect and study neutrinos from all different sources.
They have led us to the confirmation of the flavour effects first observed in
solar and atmospheric neutrino beams, with terrestrial accelerator and reactor
neutrino experiments and have provided us with the first evidence of physics
beyond the Standard Model.

In brief, all these experiments have established that lepton flavor is not con-
served in neutrino propagation, but it oscillates with a wavelength depending
on distance and energy, demonstrating beyond doubt that neutrinos are mas-
sive and the mass states are non-trivial admixtures of flavor states [15, 16],
see Ref. [17] for an overview. For example, the results of the NuFIT 3.0 global
fit to latest neutrino data in this now well-establish scenario of three-neutrino
oscillations are summarized in Table 1.1 [5, 6].

Indeed, now that the neutrino mass differences and most oscillation param-
eters, are well established with the use of human made neutrinos, we can turn
to use some of the results obtained with the natural neutrinos (in particular
neutrinos from extraterrestrial sources) to explore some additional questions
such as: What are the solar neutrino fluxes produced in the different reactions
in the Sun? Are Standard Solar Models consistent with observed solar fluxes
and other measurements? Are there non-standard interactions between active
neutrinos? Do sterile neutrinos exist? If so, are there any exotic interactions
among sterile neutrinos?.

We are trying to answer or partly answer these questions in this thesis
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 0.83)
bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.306+0.012
−0.012 0.271→ 0.345 0.306+0.012

−0.012 0.271→ 0.345

θ12/
◦ 33.56+0.77

−0.75 31.38→ 35.99 33.56+0.77
−0.75 31.38→ 35.99

sin2 θ23 0.441+0.027
−0.021 0.385→ 0.635 0.587+0.020

−0.024 0.393→ 0.640

θ23/
◦ 41.6+1.5

−1.2 38.4→ 52.8 50.0+1.1
−1.4 38.8→ 53.1

sin2 θ13 0.02166+0.00075
−0.00075 0.01934→ 0.02392 0.02179+0.00076

−0.00076 0.01953→ 0.02408

θ13/
◦ 8.46+0.15

−0.15 7.99→ 8.90 8.49+0.15
−0.15 8.03→ 8.93

δCP/
◦ 261+51

−59 0→ 360 277+40
−46 145→ 391

∆m2
21

10−5 eV2 7.50+0.19
−0.17 7.03→ 8.09 7.50+0.19

−0.17 7.03→ 8.09

∆m2
3`

10−3 eV2 +2.524+0.039
−0.040 +2.407→ +2.643 −2.514+0.038

−0.041 −2.635→ −2.399

Table 1.1: Three-flavor oscillation parameters from the fit to global data in
Ref. [5, 6]. The numbers in the 1st (2nd) column are obtained assuming NO,
m1 < m2 < m3 (IO, m3 < m2 < m2), i.e., relative to the respective local
minimum. Note that ∆m2

3` ≡ ∆m2
31 > 0 for NO and ∆m2

3` ≡ ∆m2
32 < 0 for

IO.

whose outline is as follows.
In Chapters 2 and 3 we focus on solar neutrinos. The Sun burns and pro-

duces energy through nuclear fusion via two sets of reactions known as the
pp chain and the CNO cycle, of which the pp chain serves as the dominant
source of energy and of neutrinos. These neutrinos, produced in the core of
the Sun, reach the Earth and are then detected by a variety of experiments
which renders us the possibility of determining the neutrino fluxes produced
by the different reactions directly from neutrino data, this is, independently
of the solar modeling and they are used to probe the solar interior. In Chap-
ter 2 we present the results of our global analysis of neutrino oscillation data
using Bayesian statistics and provide the results of such model-independent
determination of the solar neutrino fluxes.

These newly determined solar neutrino fluxes in turn provide us with a bet-
ter perspective of the solar models as we discuss in Chapter 3. Standard Solar
Models (SSMs), as we will describe, are a snapshot in the evolution of a 1 M�
star, calibrated to match present-day properties of the Sun. And in Chapter
3 we introduce the newly constructed B16 solar models and quantify their sta-
tistical significance when confronting their predictions with the solar neutrino
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and helioseismic data. Motivated by the discrepancy between the SSMs pre-
dictions and the data – the so-called solar composition problem – we turn to
study possible improvements in the solar modeling assumptions. In particular
we scrutinize the solar opacity profile used in the models which is an input
subject to biases associated with its assumed functional form. To avoid those
we introduce the use of Gaussian Process, a minimum bias non-parametric re-
gression method, to reconstruct the opacity profile and its uncertainty directly
from the data. We also develop and apply the methodology to determine the
chemical composition and other solar model inputs which better describe the
helioseismic and neutrino observations.

Next, in Chapter 4, we focus on the ultra-high energy neutrinos produced
in extragalactic sources and recently detected for the first time. The mea-
surement of the flavour composition of these neutrinos has been proposed as
a probe of the mechanism at work in their sources. This requires the precise
knowledge of the flavour evolution of the neutrino ensemble from the source to
the detector. As we describe in this chapter, in the now standard framework
of three-neutrino oscillations, there is a well-determined correlation between
the detected flavour composition and the one produced in the source. But as
we discuss, this correlation can be modified if neutrinos have non-standard in-
teractions which would affect their flavour evolution when crossing the Earth
matter before reaching the detector. To quantify this effect we investigate
how the neutrino flavor transition probability from the source to the detector
is modified in the presence of a general form of Earth matter potential induced
by the NSI. With those we can quantify the possible modification of the de-
tected flavor composition which are still allowed within the existing bounds
on the NSI.

Finally in Chapter 5 we focus on cosmological neutrinos, produced in the
early universe, and study how cosmological data can be used to constrain se-
cret interactions among eV scale sterile neutrinos which should be part of those
cosmological neutrinos in proposed extensions of the standard three-neutrino
scenario. As described in the chapter, this study requires understanding the
expansion history of the universe and the corresponding evolution of its inho-
mogeneities and anisotropies which lead to the observed spectrum of cosmic
microwave background (CMB) and large scale structure data. Neutrinos leave
imprints on these observations which depend on their mass and interactions.
The motivation of this study is a set of anomalies observed in short base-
line oscillation experiments which favour sterile neutrinos of eV mass scale
and non negligible mixing with the three active ones. Technically, to study
the thermalization of such sterile neutrinos in the early universe we resort to
the quantum kinetic equations (QKEs) with a momentum average approxi-
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mation, and to quantify their effect on the evolution of the anisotropies and
inhomogeneities the neutrino Boltzmann equations have to be modified. New
interactions among these sterile states could also be accounted for in the same
formalism and, depending on their strength, they can severely modify the ef-
fects that those sterile neutrinos have on the observables. Once all the effects
are quantitatively accounted for we perform an statistical analysis of CMB and
large scale structure data which allows us to constrain the parameter space for
sterile neutrinos with such new interactions.

We provide a summary of the main conclusions in Chapter 6.
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Chapter 2

Solar Neutrinos

The Sun, as a main-sequence star, has been burning for over 4.6 billion
years. While it is commonly considered to be born in primordial gases bounded
by gravity, one may question how the Sun stabilize itself form gravitational col-
lapse over the years. The answer is pressure. There are two sources of pressure
keeping the Sun balanced, one from the thermal motion of electrons and nuclei,
and the other from the radiation of photons. The latter is a product of nuclear
fusion inside the solar core. It was not until the discovery of neutrinos that
people realized that photons are not the only particles which are generated in
the Sun and are able to escape. Because of the Sun’s opacity, it takes photons
about 104 years to diffuse from the core to the surface of the Sun. Neutrinos,
on the contrary, barely interact with the solar matter, and can escape the Sun
in an almost transparent way. These neutrinos have been detected with great
efforts at terrestrial solar neutrino experiments, which soon raised a tension
between the detected and theoretically predicted solar neutrino fluxes. This is
the well-known “solar neutrino problem” [18]. The solution of the solar neu-
trino problem reside in the flavour transition of massive neutrinos in the Sun
matter via the Mikheyev-Smirnov-Wolfenstein (MSW) [19–21] mechanism. In
this chapter we begin with the introduction of solar neutrinos and their oscil-
lations. After that we provide the model-independent determination of solar
neutrino fluxes.

2.1 Introduction to Solar Neutrinos

In this section, we first introduce in Sec. 2.1.1 the mechanisms that produce
solar neutrinos and then in Sec. 2.1.2 briefly describe the main solar neutrino
experiments which have detected solar neutrinos from high energy 8B neutrinos
down to low energy 7Be and even pp neutrinos. We then introduce in Sec. 2.1.3
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the basics of flavour oscillation of neutrinos in the Sun able to reconcile the
observed and the predicted neutrino fluxes.

2.1.1 Proton-proton chain and CNO cycle

We know from the theory of Big Bang Nucleosythesis that there are 75% of
hydrogen and 25% of helium in the primordial gas by mass fraction. The Sun,
which is formed from primordial gas, is believed to contain 71.0% of hydrogen,
27.1% of helium and the rest are metals [22, 23] (here metals refer to nuclei
heavier than helium). Thus the most frequent reactions in the Sun are the
fusion of four hydrogen nuclei into one helium nucleus

4p −→ 4He + 2e+ + 2νe + γ (2.1)

where the energy released in this process can be approximated by Q ' 4mp−
m4He − 2me ' 26 MeV. However, the temperature in the solar interior is not
high enough to bring four protons close enough for the reaction to happen
directly. Most of the time the hydrogen burn into 4He via two set of processes:
the proton-proton (pp) chain and the carbon-nitrogen-oxygen (CNO) cycle.

As we will describe in Chapter 3 the nuclear rates associated with these
two sets of reactions are a fundamental input in the standard modeling of the
Sun. With our present knowledge of these nuclear rates the energy provided
by the pp chain contributes to more than 98% of the solar luminosity. It begins
with the process p+p→ D+e+ +νe. The neutrinos produced by this reaction
are referred to as pp neutrinos. As a result of the kinematics of e+ and νe,
the energy spectrum of pp neutrinos is continuous. We see from Table 2.1
that the spectrum is characterized by the maximum energy of 0.423 MeV and
average energy of 0.267 MeV. A rare process which contributes to 0.25% of
deuterium production is the capture of electrons via p + e− + p → D + νe.
These neutrinos are referred to as pep neutrinos with energy 1.455 MeV. Note
that the nuclear matrix elements of pp reactions and pep reactions are the
same. As a consequence, the ratio of pp neutrino flux and pep neutrino flux
is fixed. We shall use this fact in our global fit discussed in the next section.
Deuterium in the Sun can only burn into 3He through D + p →3 He + γ. No
neutrino production is associated with this process. 3He is of course not the
end of the story because of its instability. Further nuclear fusions lead to the
synthesis of heavier nuclei. There are several mechanisms which terminate the
pp chain and finally produce 4He as described in reaction (2.1). The first is
3He burn into 4He directly, i.e. 3He +3 He→4 He + 2p. This is known as pp-I
and makes up 86% of the terminations. Another mechanism is the formation
of 7Be via 3He +4 He →7 Be + γ. Neutrinos are not produced in this process
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Type Reaction Eave
ν Emax

ν

pp p+ p→ D + e+ + νe 0.2668 0.423

pep p+ e− + p→ D + νe 1.455 1.455

D + p→3 He + γ

pp-I 3He +3 He→4 He + 2p

pp-II

3He +4 He→7 Be + γ
7Be 7Be + e− →7 Li + νe 0.8631 0.8631
7Be 7Be + e− →7 Li∗ + νe 0.3855 0.3855

7Li + p→ 24He

pp-III

7Be + p→8 B + γ
8B 8B→8 Be∗ + e+ + νe 6.735 ∼15

8B∗ → 24He

pp-IV hep 3He + p→4 He + e+ + νe 9.628 18.778

CNO

13N 13N→13 C + e+ + νe 0.7063 1.1982
15O 15O→15 N + e+ + νe 0.9964 1.7317
17F 17F→17 O + e+ + νe 0.9977 1.7364

Table 2.1: Nuclear reactions in the Sun grouped by pp chain and CNO cycle [7,
8]. The average neutrino energy Eave

ν and maximum energy Emax
ν are in units

of MeV. Different types of neutrinos are named after their sources of nuclear
reactions.

but 7Be can capture electrons to form 7Li with neutrinos as byproducts, i.e.
7Be + e− →7 Li + νe. The ground state 7Li is associated with neutrinos of
energy 0.862 MeV (branching ratio 89.7%) and the excited 7Li∗ is associated
with neutrinos of energy 0.384 MeV (branching ratio 10.3%). 7Be neutrinos
are supposed to be monoenergetic since only two particles are produced and
neutrinos are nearly massless compared with 7Li . The fusion of 7Li and
proton finally produces 4He , which is known as pp-II and constitutes 14% of
the terminations. In some rare cases (with the probability of 0.015%), 7Be can
burn into 8B via 7Be + p→8 B + γ and 8B→8 Be∗ + e+ + νe. Though the 8B
neutrino flux is very small compared with pp flux or 7Be flux, it is characterized
by an energy as high as 15 MeV, making it more accessible to experimental
detection. 8Be∗ subsequently decay into two helium nuclei to terminate the
pp-III chain. Besides these mechanisms, it is theoretically predicted that 3He
is able to burn into 4He by proton capture via 3He + p →4 He + e+ + νe. It
is believed that this process constitutes 2 × 10−7 of the terminations and is
sometimes referred to as pp-IV. The hep neutrino flux produced in this process
is very small.
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On the other hand, the energy provided by CNO cycles only contributes
to about 1.5% of the solar luminosity. CNO cycles start with the burning
of the most abundant heavy metal, carbon, as 12C + p →13 N + γ. 13N will
subsequently decays to 13C via 13N →13 C + e+ + νe. This process produces
13N neutrinos with maximum energy 1.1982 MeV and average energy 0.7063
MeV. By capturing protons 13C turns into 14N, i.e. 13C + p→14 N + γ. A rare
process gives birth to 15O and 15O neutrinos, and also terminates the cycle via
14N + p →15 O + γ, 15O →15 N + e+ + νe, and 15N + p →12 C +4 He. This
cycle is known as CNO-I. About 0.1% of the time [8] 15N instead captures
protons and makes 16O with the reaction 15N + p →16 O + γ. This reaction
is responsible for the production of 17F neutrinos via 16O + p →17 F + γ and
17F →17 O + e+ + νe. Most frequently this new cycle, known as CNO-II,
is terminated by the production of 14N and 4He via 17O + p →14 N +4 He.
There may exist other reactions that produce CNO neutrinos, but they are
less relevant in the Sun. Just as 13N neutrinos, 15O and 17F neutrinos are also
the product of beta decays characterized by continuous spectra with similar
maximum and average energies.

As mentioned above, the rates of these reactions are inputs in the con-
struction of Standard Solar Models (SSM’s) (see Chapter 3) which in turn
predict the spectrum of neutrinos emitted. For example, we show in Fig 2.1.1
the energy spectra of neutrinos from pp chains and CNO cycles as predicted
by the B16 GS98 model of Ref.[1]. It is clear that pp neutrinos dominate
the solar neutrino fluxes. However, as a result of the higher energy reach, 8B
neutrinos are most likely to fall into the detector sensitivity of solar neutrino
experiments. We now briefly describe the experimental results of the direct
detection of solar neutrinos.

2.1.2 Solar Neutrino Experiments

Over the past half century and thanks to the development in experimental
techniques, we have been able to detect solar neutrinos with better and bet-
ter precision over an increasing range of neutrino energies. One can classify
the solar neutrino experiments in three groups according to their detection
technique:

• Radiochemical experiments. The pioneering work was conducted by
Homestake experiment which detected solar neutrinos by the inverse
beta decay of 37Cl via [24]

νe +37 Cl→37 Ar + e− . (2.2)
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Figure 2.1: The energy spectrum of solar neutrinos as a function of neu-
trino energy with the uncertainties in the different contributions quoted in the
parentheses [1].

The experiment was carried out in the Homestake Gold Mine in Lead,
South Dakota. The apparatus consists of 380 m3 of perchloroethylene
(C2Cl4) placed deep underground to shield the detector from cosmic
rays. The reaction threshold is 0.814 MeV so this experiment can only
detect neutrinos with relatively high energies. The 37Ar produced in the
detector were collected and counted periodically to obtain the neutrino
capture rate. After the operation from 1970 to 1994, Cleveland et al [25]
report the average event rate:

RCl = 2.56± 0.16± 0.16 SNU , (2.3)

where the unit 1 SNU = 10−36captures/atom/sec was introduced by Bah-
call [26]. This is about 1/3 the prediction of SSM’s. Notice that as only
the total rate can be measured the experiment provide no spectral infor-
mation beyond that of the threshold energy.

Instead of Chlorine, GALLEX/GNO and SAGE experiments made use
of neutrino capture by 71Ga target. The reaction responsible for this
process is

νe +71 Ga→71 Ge + e− , (2.4)

which is characterized by an energy threshold as 0.233 MeV. The low
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threshold makes it possible to detect neutrinos from almost the full spec-
trum, especially pp neutrinos which make up the largest portion of solar
neutrinos. GALLEX [27] operated from 1991 to 1997 at the Labora-
tori Nazionali del Gran Sasso (LNGS) in Italy. The detector was filled
with 101 tons of GaCl3HCl solution which contained 30.3 tons of gal-
lium. After a break, its successor GNO experiment continued running
from 1998 to 2003 with the same detector. SAGE [28] used 57 tons of
liquid gallium metal deep underground at the Baksan Neutrino Observa-
tory in the Caucasus mountains of Russia. A combined analysis of SAGE
and GALLEX/GNO experiments yield the average neutrino capture rate
of [29]

RGa = 68.1± 3.75 SNU , (2.5)

which is about half the prediction of SSM’s.

• Water Cherenkov experiments. Kamiokande [30] was designed to detect
solar neutrinos with the neutrino-electron elastic scattering (ES)

να + e− → να + e− , (2.6)

where να can be electron, muon or tau neutrinos. The detector was lo-
cated in the Kamioka mine in Japan, and contained 3000 tons of pure
water. The scattered electrons may travel in a speed faster than the ve-
locity of light in water, producing light cones which are called Cherenkov
radiation. Kamiokande detector was equipped with 1000 photomulti-
plier tubes (PMTs) which are able to detect the Cherenkov radiation
and reconstruct the neutrino energy and direction. Kamiokande oper-
ated from 1987 to 1995 until replaced by the Super-Kamiokande (SK)
experiment [31]. The SK detectors were upgraded to contain 50 kilotons
of ultrapure water and about 11000 PMTs in the inner detector and
about 1900 PMTs in the outer detector. SK experiment has been run-
ning for about two decades. From April 1996 to July 2001 was a period
called SK-I. The neutrino energy threshold was improved from 6.2 MeV
to 4.7 MeV in this period. The experiment resumed in October 2002 and
ended in October 2005 with only half of its original number of PMTs.
The period was called SK-II. Another SK-III period ran from July 2006
to September 2008 which reduced the energy threshold a little to 4.5
MeV and the SK-IV period began on September 2008. The Kamiokande
measured a 8B flux of (2.80±0.19±0.33)×106 cm−2s−1 and SK obtained
the flux of (2.35 ± 0.02 ± 0.08) × 106 cm−2s−1. They are about 40% of
the prediction of SSM’s.
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SNO [32] is another water Cherenkov experiment located in the Creighton
mine, near Sudbury, Canada. The detector consists of 1000 tons of
ultrapure heavy water and the Cherenkov light is detected by 9456
inward-looking and 91 outward-looking PMTs. Unlike SK experiment,
SNO measures the solar neutrinos via three different kinds of reactions:
charged current (CC), neutrino current and elastic scattering (ES), i.e.

(CC) νe +D → p+ p+ e− ,

(NC) να +D → p+ n+ να ,

(ES) να + e− → να + e− . (2.7)

The CC, NC and ES reactions are characterized by the neutrino energy
threshold of 6.9 MeV, 2.224 MeV and 5.7 MeV respectively and therefore
they are measuring also the 8B flux. The SNO experiment underwent
three phases from November 2001 with 306.4 live days of data for phase-
I, 391.4 live days for the salt phase (phase-II) and 385.2 live days for the
NCD phase (phase-III). An analysis of the SNO experiment after the
most precise phase-II determined the neutrino fluxes measured in the
three reactions [33]

ΦSNO
CC = 1.68+0.06

−0.06(stat)+0.08
−0.09(sys)× 106 cm−2s−1 ,

ΦSNO
ES = 2.35+0.22

−0.22(stat)+0.15
−0.15(sys)× 106 cm−2s−1 ,

ΦSNO
NC = 4.94+0.21

−0.21(stat)+0.38
−0.34(sys)× 106 cm−2s−1 . (2.8)

The results show that while the fluxes measured in CC and ES reactions
were about 30% and 40% of the predicted by SSM’s, the NC flux was
in good agreement with the model prediction. Indeed the ratio of CC
and NC fluxes played an important role as test of the particle physics
explanation of the observed deficit in solar neutrinos as it is independent
of the flux normalization.

• Scintillator experiments. In these experiments the target material is
liquid scintillator. The incoming solar neutrinos scatter with electrons
elastically and the recoiled electrons induce scintillation light in the de-
tector, which is detected by the surrounding PMTs giving information
on the deposited energy. Presently the most important of this type of
experiment is Borexino [34]. It is an ongoing experiment located at the
Laboratori Nazionali del Gran Sasso, Italy. The detector consists of 278
tons of ultrapure liquid scintillator surrounded by 2212 PMTs.

Borexino began taking data in May 2007. From December 2011 to May
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2016 Borexino collaboration launched a run which is called Borexino
Phase-II. Recently they announced the first simultaneous precision spec-
troscopy of pp, 7Be and pep solar neutrinos [35]. With a multiparameter
fit to their observed spectrum and assuming the energy dependence of
the different solar neutrino reactions known, they can extract the con-
tribution to their event rates from the different components of the solar
flux as (given in captures per day per 100 ton):

Rpp = 134± 10(stat)+6
−10(sys),

R7Be = 48.3± 1.1(stat)+0.4
−0.7(sys) (2.9)

Rpep = 2.43−−2.65± 0.36(stat)+0.18
−0.24(sys) (2.10)

where the range of the Rpep spans over uncertainty on the assumed value
of the CNO fluxes which were fixed in the analysis.

When compared with the solar model predictions the observed rates
show a deficit ranging between 60% for pp to about 50% for pep.

Most future solar neutrino experiments a belong to the third type of scintilla-
tor experiments. An incomplete list of future experiments include the SNO’s
successor SNO+ [36], JUNO [37], RENO-50 [38], LENA [39], HyperK [40],
LENS [41] and ASDC-Theia [42]. While aiming at detecting low energy neu-
trinos, they may also be expected to search for dark matter and neutrinoless
double beta decay.

2.1.3 Flavour Transition for Solar Neutrinos

In the Standard Model there are three species of massless neutrinos charac-
terized by their CC weak interactions: electron neutrinos νe, muon neutrinos
νµ and tau neutrinos ντ , which are often referred to as flavor eigenstates. In the
model lepton flavour is then conserved by construction. However the results
described above from solar neutrino experiments together with those detect-
ing atmospheric neutrinos as well as neutrinos produced in terrestrial sources
at reactor and accelerators have convinced us that lepton flavour is not con-
served in the propagation of neutrinos and the model has to be extended. The
minimal extension able to explain all the confirmed results requires the intro-
duction of masses for the neutrino states so it is possible the misalignment
between the neutrino flavor (i.e. interaction) eigenstates and mass eigenstates
ν1, ν2, ν3 which are related by

|να〉 =
∑
i

U∗αi|νi〉 , (2.11)
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with να as flavor basis and νi as mass basis. Uαi is the leptonic mixing ma-
trix [43], in similarity with the CKM matrix for quarks. For free neutrinos of
momentum p propagation eigenstates are the mass eigenstates so

|νi(t)〉 = e−i(Eit−px)|νi(0)〉 . (2.12)

Neutrinos travel with a speed close to light. In the untrarelativistic limit, we
can expand the neutrino energy as

Ei =
√
p2
i +m2

i ' pi +
m2
i

2Ei
, (2.13)

and we are left with

|νi(t)〉 = e
−im

2
i

2Ei
t|νi(0)〉 . (2.14)

So if neutrinos are produced in a pure eigenstate να and travel a distance
L, we can detect them with the same or another neutrino flavor νβ with the
probability

Pαβ = |〈νβ|να(t)〉|2 = δαβ − 4
∑
i>j

Re(U∗αiUβiUαjU
∗
βj) sin2

(
∆m2

ijL

4E

)

− 2
∑
i>j

Im(U∗αiUβiUαjU
∗
βj) sin2

(
∆m2

ijL

2E

)
,(2.15)

where Eq. (2.11) and (2.14) are applied and ∆m2
ij = m2

i −m2
j represents the

squared mass difference between different mass eigenstates. As most experi-
ments are characterized by some range of L/E, the dominant effect observed
comes from one particular mass difference and the flavour transition probabil-
ity they are most sensitive to can be approximated by the two-neutrino limit
where we can simply write

Pαα = 1− sin2 2θ sin2

(
1.27

∆m2

eV2

L

km

GeV

E

)
, (2.16)

and theta is the mixing angle between the two neutrino states. In the 2ν dom-
inance approximation it is physically equivalent to allow ∆m2 to be positive
and negative or to allow θ to lie in different octant. It is customary for solar
neutrinos to restrict ∆m2 to be positive and choose 0 ≤ θ ≤ π/2.

The effects described above are what is defined as neutrino flavour oscilla-
tions in vacuum. In some cases, especially for solar neutrinos, neutrinos prop-
agate through dense medium consisting of electrons, protons and neutrons and
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they can undergo coherent forward scattering with those. As ordinary mat-
ter contains electrons but not muons nor taus the scattering amplitudes are
different for νe than for νµ and ντ . In the absence of muons and taus, νe can
interact with solar matter through charged current (CC) interaction while νµ
and ντ cannot. This leads to the modification of the flavour transitions. This
effect can be introduced in the evolution equation of the neutrino ensemble
in terms of a “matter” potential. For scattering in ordinary matter, we can
express the matter potential difference for νe’s vs the other flavours as

V =
√

2GFne , (2.17)

where ne is the electron number density. In the Sun the electron number
density decreases from the solar core to the surface approximately as

ne(r) = n0e
−r/r0 , (2.18)

where n0 = 245NA cm−3 (NA is the Avogadro constant), r0 = 0.1R� (R� is the
radius of the Sun) and the relation is valid in the radius 0.1 < r/R� < 0.9 [8].
Again considering two-flavor neutrino oscillations with electron neutrinos and
muon neutrinos only, we can write the admixture of neutrino states as ν(x) =
{νe(x), νµ(x)}T , where νe(x) and νµ(x) represent the probability amplitude to
find electron and muon neutrinos respectively. The flavour evolution of the
neutrino ensemble obeys the equation

i
dν(x)

dt
= Hmν(x) , (2.19)

where the effective Hamiltonian

Hm =
1

2E
U

(
m2

1 0
0 m2

2

)
U † +

(
V (x) 0

0 0

)
, (2.20)

and the mixing matrix

U =

(
cos θ sin θ
− sin θ cos θ

)
. (2.21)

For convenience we define A ≡ 2EV = 2
√

2GFneE. To solve Eq. (2.19) we
first diagonalize Hm with matrix Um and find two eigenvalues

µ2
2,1 =

1

2

[
m2

1 +m2
2 + A±

√
(A−∆m2 cos 2θ)2 + (∆m2 sin 2θ)2

]
. (2.22)

They ought to be treated as the new neutrino mass eigenvalues in matter. If
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the effective potential V was constant, we can proceed to solve Eq. (2.19) and
find the survival probability of electron neutrinos

Pee = 1− sin2 2θm sin2

(
(µ2

2 − µ2
1)L

4E

)
, (2.23)

with

tan 2θm =
∆m2 sin 2θ

∆m2 cos 2θ − A
. (2.24)

Eq. (2.23) resembles Eq. (2.16) except that θ and ∆m2 are replaced by the
in-medium mixing angle and mass squared difference.

For not constant potential we can define the new mass eigenstates as ν̃(x) =
{ν̃1(x), ν̃2(x)}T which are the instantaneous eigenvectors of the Hamiltonian.
They are not necessarily the original mass eigenstates but depend on time
(or traveling distance). After diagonalization of the Hamiltonian we have the
equations

i
dν(x)

dt
=

1

2E

[
Um

(
µ2

1 0
0 µ2

2

)
U †m

]
ν(x), ν(x) = Umν̃(x) , (2.25)

where the in-medium neutrino mixing matrix

Um =

(
cos θm sin θm
− sin θm cos θm

)
. (2.26)

It is straightforward to write Eq. (2.25) in terms of the instantaneous mass
eigenstates as

i
dν̃(x)

dt
=

[
1

2E

(
µ2

1 0
0 µ2

2

)
− iU †m(x)

dUm(x)

dx

]
ν̃(x) . (2.27)

Because of the second term, Eq. (2.27) is not diagonal, which means that the
instantaneous mass eigenstates are not the eigenstates of the evolution. This
leads to the possible violation of adiabaticity in the evolution. If θm varies
slowly with time, the second term in the square bracket can be ignored. This
is the adiabatic condition which is often satisfied in the Sun. If this is the case,
we may continue to solve Eq. (2.27) and obtain the electron neutrino survival
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probability

Pee =
1

2
[1 + cos 2θm(L) cos 2θm(0)]

+
1

2
sin 2θm(L) sin 2θm(0) cos

[∫ L

0

µ2
2(x)− µ2

1(x)

2E
dx

]
. (2.28)

Since the energy spectra of neutrinos are continuous and the detected neutrino
fluxes are averaged over energy and integrated over large L, the last term in
Eq. (2.28) averages out in any solar neutrino experiment provided ∆m2 is
above 10−10 eV2. So finally we have

〈Pee〉 =
1

2
[1 + cos 2θm(L) cos 2θm(0)] . (2.29)

From Eq. (2.24) we see that for a given value of ∆m2 cos 2θ and energy E there
is a potential for which the denominator of Eq. (2.24) vanishes. This is usually
referred to as the resonance potential. At this value of the potential the mixing
angle in matter becomes maximal (θm = π/4) independently of its value in
vacuum and for matter potentials well above this resonance value the mixing in
matter becomes π/2, this is there is a full reversal of the flavour composition.
This is the so-called MSW effect [19–21]. For example for a neutrino produced
in the core of the Sun and for tan2 θ ∼ 0.5 and ∆m2 ∼ 8 × 10−5eV2 (which
are the parameters which eventually better describe the full data)

Eres =
∆m2 cos 2θ

2
√

2GFne(0)
' 1.75 MeV . (2.30)

Notice also that since A is positive, the cancellation of the denominator of
Eq. (2.24) can only happens for the first octant of θ (in the used convention
of positive ∆m2), breaking the symmetry of the vacuum survival probability
about π/4.

Altogether the final result of the matter effects on the neutrino evolution
depend on the relation between ∆m2 cos 2θ and A:

• If ∆m2 cos 2θ � A0 where A0 is taken at the neutrino production point
(in the solar core), the matter effects can always be neglected. With
what we know of θ and ∆m2 this applies to pp neutrinos and 7Be neutri-
nos whose maximum energies are below Eres. In this case the averaged
survival probability of electron neutrinos

〈Pee〉 = 1− 1

2
sin2 2θ , (2.31)
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where the average over L/E is applied. The minimum survival proba-
bility 0.5 is reached when θ = π

4
.

• If ∆m2 cos 2θ & A0, the resonance condition ∆m2 cos 2θ = A is never
realized in the neutrino trajectory since the electron number density
decreases from the solar core to the surface. As a consequence, the
averaged survival probability is not different from Eq. (2.29), i.e.

〈Pee〉 =
1

2
[1 + cos 2θ cos 2θm(0)] . (2.32)

We don’t expect neutrinos to go through dense medium at the detector,
thus the in-medium mixing angle θ(L) is just the vacuum mixing angle
θ. This result can be interpreted intuitively. When electron neutrinos
are created at the solar core they consist of cos2 θm(0) fraction of ν̃1 and
sin2 θm(0) fraction of ν̃2. Neutrinos stay in their new mass eigenstates
until they exit the Sun, when a fraction of cos2 θ of ν̃1 and a fraction
of sin2 θ of ν̃2 contribute to the total electron neutrino fluxes. As a
result, we expect 〈Pee〉 = cos2 θm(0) cos2 θ + sin2 θm(0) sin2 θ, which is
just Eq. (2.32) above.

• If ∆m2 cos 2θ . A0 the resonance condition will be inevitably satisfied in
the way when neutrinos travel outside the Sun. It turns out that for the
whole energy spectra of solar neutrinos the resonance condition is always
crossed adiabatically [17]. Therefore Eq. (2.32) still holds to describe the
survival probability of electron neutrinos.

• If ∆m2 cos 2θ � A0, one finds θm ' π
2

from Eq. (2.24) when A is large
enough. In this case we have

〈Pee〉 =
1

2
(1− cos 2θ) = sin2 θ , (2.33)

Assuming tan2 θ ∼ 0.5 we arrive at 〈Pee〉 ' 1
3
, which explains the deficit

of 8B neutrinos detected at SNO and SK experiments.

Finally let us mention the KamLAND [44] experiment, a non-solar neutrino
experiment but which yields information on νe (indeed reactor ν̄e) survival
probability in vacuum relevant for the same ranges of ∆m2 and θ. By mea-
suring the spectrum of reactor neutrinos produced at an average distance of
180 km, KamLAND confirmed the flavour vacuum oscillation of ν̄e with values
of ∆m2 and θ which are consistent with those required for better description
of the solar neutrino results in terms of MSW matter transitions. This solar
model independent determination of the oscillation parameters allows then to
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use the solar neutrino results to determine directly from the experiment the
values of the different components of the unoscillated solar neutrino fluxes as
we describe in the next section.

Before closing this section we have to point out that the probabilities de-
scribed above are given in the two-neutrino state approximation. However we
know that to globally describe the results of neutrino experiments performed
with atmospheric neutrinos as well as neutrinos from reactors and accelera-
tors we need to consider the mixing between the three neutrino flavours. In
the usual parametrization of the 3ν mixing the solar and KamLAND experi-
ments dominantly determine the parameters ∆m2

21 and θ12 while experiments
measuring atmospheric and long baseline accelerator neutrinos mainly deter-
mine |∆m2

32| and θ23 while reactor experiments performed at km baselines
determine |∆m2

32| and θ13. Furthermore the results are such that ∆m2
21 �

|∆m2
32| ' |∆m2

31|. Because of this hierarchy in the mass splittings, the rele-
vant survival probabilities for solar and KamLAND neutrinos can be precisely
approximated as

Pee = cos4 θ13 P
2ν
ee (∆m2

12, θ12) + sin4 θ23 (2.34)

where P 2ν
ee is given by the 2-ν expressions above but with a modified matter

potential V = cos2 θ13

√
2GFne [45].

2.2 Solar Neutrino Flux Determination: Method-

ology

We have discussed the solar neutrino problem extensively in the previous
section. It has now been fully solved by neutrino oscillations and matter
effects in the neutrino propagation. And with the upcoming of more and
better experiments we have been able to determine the neutrino oscillation
parameters with better and better precision.

However, in parallel to the increased precision in our understanding of neu-
trino propagation, a new puzzle emerged in the consistency of SSMs [46] (see
Sec. 3.1 for detailed descriptions of SSMs). SSMs built in the 1990’s were
very successful in predicting other observations. In particular, quantities mea-
sured by helioseismology such as the radial distributions of sound speed and
density [47–50] showed good agreement with the predictions of the SSM cal-
culations and provided accurate information about the solar interior. A key
element to this agreement was the input value of the abundances of heavy ele-
ments on the surface of the Sun [10]. However, since 2004 new determinations
of these abundances became available, pointing towards substantially lower
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values [11, 51]. The SSMs based on such lower metallicities fail at explaining
the helioseismic observations [46]. This led to the construction of two different
sets of SSMs, one based on the older solar abundances [10] generically re-
ferred to as “GS98” models implying high metallicity, and one assuming lower
metallicity as inferred from the more recent determinations of the solar abun-
dances [11, 51] referred to as “AGSS09” models. The two variant of models
lead, in general, to somewhat different prediction for the solar neutrino fluxes.

We will go back to the issue of improvements in the solar modeling in
Chapter 3. In here we aim at circumventing the use of solar models by di-
rectly determining the solar neutrino spectrum from the solar neutrino exper-
imental results. The basic assumption is that the energy dependence of the
neutrinos produced in each of the eight nuclear reactions is well determined by
well known kinematics thus the full spectrum can be parametrized in terms of
the normalizaiton of the eight components. Furthermore the deconvoluion of
the unoscillated fluxes from the measured oscillated rates is possible because
the relevant oscillation parameters are determined independently by non-solar
experiments, this is, the energy dependence of the survival probability is in-
dependently known.

So what we present next is the results of a solar model independent analysis
of the solar and terrestrial neutrino data in the framework of three-neutrino
masses and mixing, aiming at simultaneously determine the flavor parameters
and all the solar neutrino fluxes with a minimum set of theoretical priors. We
begin with the introduction in Sec. 2.2.1 of the basics of Bayesian statistics
which we use in the analysis and describe the framework of the analysis and the
relevant prior constraints imposed in Sec. 2.2.2. The results of the analysis will
be presented in Sec. 2.3 and they are based on our published work Ref. [52].

2.2.1 Brief Introduction to Bayesian Statistics

Bayesian inference methods provide a consistent approach to the estimation
of a set of parameters ΘΘΘ in a model M for the data DDD. Bayes’ theorem states
that under the assumption that a model M is true, complete inference of its
parameters is given by the posterior distribution,

Pr(ΘΘΘ|DDD,M) =
Pr(DDD|ΘΘΘ,M) Pr(ΘΘΘ|M)

Pr(DDD|M)
=
L(ΘΘΘ)π(ΘΘΘ)

Z
, (2.35)

where L(ΘΘΘ) ≡ Pr(DDD|ΘΘΘ,M) is the likelihood function. The prior probability
density of the parameters is given by π(ΘΘΘ) ≡ Pr(ΘΘΘ|M), and should always
be normalized, i.e., it should integrate to unity. Conversely the evidence,
Zi = Pr(DDD|Mi), is the likelihood for the model quantifying how well the model
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|ln(Bij)| Strength of Evidence
< 1.0 Inclusive

1.0–2.5 Weak to Moderate
2.5–5 Moderate to Strong
> 5.0 Strong to Very Strong/Decisive

Table 2.2: Jeffrey’s scale for interpretation of the Bayes factors

describes the data. It is given by

Z =

∫
L(ΘΘΘ)π(ΘΘΘ)dΘΘΘ . (2.36)

From the posterior distribution one can construct reparametrization in-
variant Bayesian credible intervals by defining the “credible level” of a value
η = η0 of a subset of parameters simply as the posterior volume within the
likelihood of that value,

CL(η0) =

∫
L(η)>L(η0)

Pr(η|DDD)dη. (2.37)

This function can be converted to the “number of σ’s” in the usual manner as

S =
√

2erfc−1(1− CL). (2.38)

Bayesian statistics is mostly suited to make a relative statement about
the plausibility of a given model Mi versus another Mj by comparing their
respective posterior probabilities. This is quantified by means of the Bayes
factor

Bij =
Zi
Zj

(2.39)

which is the ratio of the evidences. Jeffrey’s scale is often used for the inter-
pretation of the Bayes factors (see Table 2.2.1). This gives what the ratio of
posterior probabilities for the models would be if the overall prior probabilities
for the two models were equal. Or in other words it shows by how much the
probability ratio of model Mi to model Mj changes in the light of the data,
and thus can be viewed as a numerical measure of evidence supplied by the
data in favour of one hypothesis over the other.

It is also possible to make an absolute test of significance of a given model
M by using the prior predictive distribution, which is to be understood as a
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distribution of the possible observable outputs O,

Pr(O) =

∫
Pr(O|ΘΘΘ)π(ΘΘΘ)dNΘΘΘ (2.40)

to determine the probability distribution function for some statistics T (O)
and compare it with what was actually observed. This would be done as usual
by calculating the p-value

p = Pr(T (O) ≥ T (Odat)) (2.41)

In this work we use MultiNest [53–55], a Bayesian inference tool which,
given the prior and the likelihood, calculates the evidence with an uncertainty
estimate, and generates posterior samples from distributions that may contain
multiple modes and pronounced (curving) degeneracies in high dimensions.

2.2.2 Analysis Framework

In the analysis of solar neutrino experiments we include the total rates from
the radiochemical experiments Chlorine [25], Gallex/GNO [56] and SAGE [57].
For real-time experiments we include the results on electron scattering (ES)
from the four phases in Super-Kamiokande: the 44 data points of the phase I
(SK1) energy-zenith spectrum [58], the 33 data points of the full energy and
day/night spectrum in phase II (SK2) [59], the 42 energy and day/night data
points in phase III (SK3) [60], and the 24 data points of the energy spectrum
and day-night asymmetry of the 1669-day of phase IV (SK4) [61]. The results
of the three phases of SNO are included in terms of the parametrization given
in their combined analysis [62] which amount to 7 data points. We also include
the main set of the 740.7 days of Borexino Phase-1 data [63, 64] as well as
their high-energy spectrum from 246 live days [65] and the 408 days of Borexino
Phase-2 data [66]. In the framework of three neutrino masses and mixing the
expected values for these solar neutrino observables depend on the parameters
∆m2

21, θ12, and θ13 as well as on the normalizations of the eight solar fluxes.
Besides solar experiments, we also include the observed energy spectrum

in KamLAND data sets DS-1 and DS-2 [44] with a total exposure of 3.49 ×
1032 target-proton-year (2135 days), which in the framework of three neutrino
mixing also yield information on the parameters ∆m2

21, θ12, and θ13.
In addition, we include the information on θ13 obtained after marginalizing

over ∆m2
3`, θ23 and δcp the results of all the other oscillation experiments con-

sidered in the NuFIT-2.0 analysis presented in Refs. [3, 67, 68]. In particular
this accounts for Super-Kamiokande atmospheric neutrino data from phases
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Flux Φref
i [cm−2 s−1] αi [MeV] βi

pp 5.98× 1010 13.0987 9.186× 10−1

7Be 5.00× 109 12.6008 7.388× 10−2

pep 1.44× 108 11.9193 2.013× 10−3

13N 2.96× 108 3.4577 1.200× 10−3

15O 2.23× 108 21.570 5.641× 10−3

17F 5.52× 106 2.3630 1.530× 10−5

8B 5.58× 106 6.6305 4.339× 10−5

hep 8.04× 103 3.7370 3.523× 10−8

Table 2.3: The reference neutrino flux Φref
i (the SFII-GS98 model of Ref. [2])

used for normalization, the energy αi provided to the star by nuclear fusion
reactions associated with the ith neutrino flux (taken from Ref. [9]), and the
fractional contribution βi of the ith nuclear reaction to the total solar luminos-
ity.

SK1–4 [69] (with addition of the 1775 days of phase SK4 over their published
results on phases SK1–3 [70]); the energy distribution of long baseline neu-
trinos from MINOS in both νµ and ν̄µ disappearance with 10.71 × 1020 and
3.36 × 1020 pot, respectively, as well as from T2K in νµ disappearance [71]
with 6.57× 1020 pot; LBL appearance results from MINOS [72] with exposure
10.6 × 1020 (νe) and 3.3 × 1020 (ν̄e) pot, and from T2K with 6.57 × 1020 pot
(νe) [73]; reactor data from the finalized experiments CHOOZ [74] and Palo
Verde [75] together with the spectrum from Double Chooz with 227.9 days live
time [76], and the 621-day spectrum from Daya Bay [77], as well as the near
and far rates observed at RENO with 800 days of data-taking [78].

In what follows, for convenience, we will use as normalization parameters
for the solar fluxes the reduced quantities:

fi =
Φi

Φref
i

(2.42)

with i = pp, 7Be, pep, 13N, 15O, 17F, 8B, and hep. The numerical values of Φref
i

are set to the predictions of the SFII-GS98 solar model as given in Ref. [2] and
are listed in Table 2.3. With this, the theoretical predictions for the relevant
observables (after marginalizing over ∆m2

23, θ23 and δcp) depend on eleven
parameters: the three relevant oscillation parameters ∆m2

21, θ12, θ13 and the
eight reduced solar fluxes fi. With the data and the theoretical predictions for
them in terms of these parameters ω = (∆m2

21, θ12, θ13, fpp, . . . , fhep) we build
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the corresponding likelihood function

− 2 lnL(ω) =
∑
i,j

(Oi(ω)−Odat
i )

σdat
i

(ρdat)−1
ij

(Oj(ω)−Odat
j )

σdat
j

(2.43)

where Oi(ω) are the predicted values of the observables as a function of the
11 parameters.

In our model-independent analysis we assume a uniform prior probability
complemented by a set of constraints to ensure consistency in the pp-chain
and CNO-cycle, as well as some relations from nuclear physics. Specifically,
we impose the following restrictions:

• The fluxes must be positive:

Φi ≥ 0 ⇒ fi ≥ 0 . (2.44)

• The number of nuclear reactions terminating the pp-chain should not
exceed the number of nuclear reactions which initiate it [9, 79]:

Φ7Be + Φ8B ≤ Φpp + Φpep

⇒ 8.49× 10−2f7Be + 9.95× 10−5f8B ≤ fpp + 2.36× 10−3fpep .
(2.45)

• The 14N(p, γ)15O reaction must be the slowest process in the main branch
of the CNO-cycle [79]:

Φ15O ≤ Φ13N ⇒ f15O ≤ 1.34f13N (2.46)

and the CNO-II branch must be subdominant:

Φ17F ≤ Φ15O ⇒ f17F ≤ 37f15O . (2.47)

• The ratio of the pep neutrino flux to the pp neutrino flux is fixed to
high accuracy because they have the same nuclear matrix element. We
have constrained this ratio to match the average of the SFII GS98 and
AGSS09 model values, with 1σ Gaussian uncertainty given by the dif-
ference between the values in the two models1

fpep

fpp

= 1.006± 0.013 . (2.48)

1We have verified that assuming a flat distribution over the 1σ uncertainty interval does
not produce significant differences in the results of our analysis.
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The number of independent fluxes is reduced when imposing the so-called
“luminosity constraint”, i.e., the requirement that the sum of the thermal en-
ergy generation rates associated with each of the solar neutrino fluxes coincides
with the solar luminosity [80]:

L�
4π (A.U.)2

=
8∑
i=1

αiΦi . (2.49)

Here the constant αi is the energy provided to the star by the nuclear fusion
reactions associated with the ith neutrino flux; its numerical value is indepen-
dent of details of the solar model to an accuracy of one part in 104 or better [9].
A detailed derivation of this equation and the numerical values of the coef-
ficients αi, which we reproduce for convenience in Table 2.3, is presented in
Ref. [9]. In terms of the reduced fluxes Eq. (2.49) can be written as:

1 =
8∑
i=1

βifi with βi ≡
αiΦ

ref
i

L�
/

[4π (A.U.)2]
(2.50)

where βi is the fractional contribution to the total solar luminosity of the nu-
clear reactions responsible for the production of the Φref

i neutrino flux, and
L�
/

[4π (A.U.)2] = 8.5272 × 1011 MeV cm−2 s−1 [9]. The analysis performed
incorporating the priors in Eqs. (2.44–2.49) will be named “analysis with lumi-
nosity constraint”, P = L�, and for this case the prior probability distribution
is:

π(ω′|L�) =


1

N
exp

[
−
(
fpep

/
fpp − 1.006

)2

2σ2

]
if Eqs. (2.44–2.47) and (2.49) are verified,

0 otherwise,

(2.51)
where N is a normalization factor and σ = 0.010. When only Eqs. (2.44–
2.48) are imposed we will speak of “analysis without luminosity constraint”,
P = /L�, so:

π(ω′| /L�) =


1

N
exp

[
−
(
fpep

/
fpp − 1.006

)2

2σ2

]
if Eqs. (2.44–2.47) are verified,

0 otherwise.

(2.52)
Let us notice that the conditions in Eqs. (2.44–2.47) and Eq. (2.49) are con-
straints on some linear combinations of the solar fluxes and they are model
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independent, i.e., they do not impose any prior bias favoring either of the
SSMs. Furthermore we have chosen to center the condition (2.48) at the av-
erage of the SFII GS98 and AGSS09 values, with 1σ Gaussian uncertainty
given by the difference between the values in the two models, to avoid the
introduction of a bias towards one of the models. In the next sections we will
comment on how our results are affected when this prior is centered about the
GS98 or the AGSS09 prediction.

2.3 Determination of Solar Neutrino Flux: Re-

sults

We are now ready to present the results of our multiparameter global anal-
ysis. We will first discuss in Sec. 2.3.1 the solar fluxes extracted within the
luminosity constraint, Eq. (2.49). We then release this constraint in Sec. 2.3.2
which allows for directly determining the amount of solar energy produced
in the pp-chain and the CNO-cycle. The directly determined solar neutrino
fluxes can also be used to assess the two SSMs, and to forecast the experimen-
tal sensitivity needed to discriminate between them with future solar neutrino
experiments as described in Sec. 2.3.3.

2.3.1 Solar Neutrino Flux with Luminosity Constraint

Our results for the analysis with luminosity constraint are displayed in
Fig. 2.2, where we show the marginalized one-dimensional probability distri-
butions Pr(fi|DDD, L�) for the eight solar neutrino fluxes as well as the 90% and
99% CL two-dimensional allowed regions. The corresponding ranges at 1σ
(and at the 99% CL in square brackets) on the oscillation parameters are:

∆m2
21 = 7.5± 0.2 [+0.4

−0.5]× 10−5 eV2 ,

sin2 θ12 = 0.30± 0.01 [+0.04
−0.03] ,

sin2 θ13 = 0.022± 0.001 [+0.002
−0.003] .

(2.53)
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Figure 2.2: Constraints from our global analysis on the solar neutrino fluxes.
The curves in the right-most panels show the marginalized one-dimensional
probability distributions. The rest of the panels show the 90% and 99% CL
two-dimensional credibility regions (see text for details).

while for the solar neutrino fluxes we get:

fpp = 0.999+0.006
−0.005 [+0.012

−0.016] , Φpp = 5.971+0.037
−0.033[+0.073

−0.097]× 1010 cm−2 s−1 ,

f7Be = 0.96+0.05
−0.04 [+0.12

−0.11] , Φ7Be = 4.80+0.24
−0.22 [+0.60

−0.57]× 109 cm−2 s−1 ,

fpep = 1.005± 0.009 [+0.019
−0.024] , Φpep = 1.448± 0.013 [+0.028

−0.034]× 108 cm−2 s−1 ,

f13N = 1.7+2.9
−1.0 [+8.4

−1.6] , Φ13N ≤ 13.7 [30.2]× 108 cm−2 s−1 ,

f15O = 0.6+0.6
−0.4 [+2.0

−0.6] , Φ15O ≤ 2.8 [5.8]× 108 cm−2 s−1 ,

f17F ≤ 15 [46] , Φ17F ≤ 8.5 [25]× 107 cm−2 s−1 ,

f8B = 0.92± 0.02 [±0.05] , Φ8B = 5.16+0.13
−0.09 [+0.30

−0.26]× 106 cm−2 s−1 ,

fhep = 2.4+1.5
−1.2 [≤ 5.9] , Φhep = 1.9+1.2

−0.9 [≤ 4.7]× 104 cm−2 s−1 .
(2.54)

We notice that with the exception of 17F all other fluxes have a vanishing (or
close to) probability for their corresponding f = 0. However, it is important
to stress that for what concerns f13N and f15O this is mostly consequence of
the inequalities in Eqs. (2.46) and (2.47), which effectively result into priors
behaving as π(fi) ∝ fi for small fi. For this reason the corresponding 1σ
credible intervals for these fluxes, constructed as iso-posterior intervals and
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shown in the left column of Eq. (2.54), do not extend to fi = 0 even though
setting f13N = f15O = f17F = 0 gives a reasonable fit to the data. With this
in mind, in the right column in Eq. (2.54) we have chosen to quote only the
1σ and 99%CL upper boundaries for the corresponding solar neutrino fluxes,
rather than the complete allowed range.

As mentioned above we have checked the stability of the results under
changes in the assumption of the Gaussian prior in Eq. (2.48). We find
that if we center this prior at the SFII-GS98 prediction (fpep

/
fpp = 1) the

best fit value for pep neutrinos is changed to fpep = 0.998 (Φpep = 1.437 ×
108 cm−2 s−1), while if we center it at the SFII-AGSS09 prediction (fpep

/
fpp =

1.013) we get fpep = 1.012 (Φpep = 1.457× 108 cm−2 s−1). All other fluxes are
unaffected.

As seen in Fig. 2.2 the most important correlation appears between the pp
and pep fluxes, as expected from the relation (2.48). The correlation between
the pp (and pep) and 7Be flux is directly dictated by the luminosity constraint
(see comparison with Fig. 2.3). All these results imply the following share of
the energy production between the pp-chain and the CNO-cycle

Lpp-chain

L�
= 0.991+0.005

−0.004 [+0.008
−0.013] ⇐⇒ Lcno

L�
= 0.009+0.004

−0.005 [+0.013
−0.008] , (2.55)

in perfect agreement with the SSMs which predict Lcno/L� ≤ 1% at the 3σ
level. Note that the same comment as on the f13N and f15O fluxes applies
to the total CNO luminosity, so we can understand the result in Eq. (2.55)
effectively as an upper bound on the contribution of the CNO-cycle to the Sun
Luminosity: Lcno/L� ≤ 2.2% at 99% CL.

2.3.2 Testing the Luminosity Constraint

In order to check the consistency of our results we have performed the same
analysis without imposing the luminosity constraint, Eq. (2.49). The corre-
sponding results for Pr(fi|DDD, /L�) and the two-dimensional allowed regions are
shown in Fig. 2.3. As expected, the pp flux is the most affected by the release
of this constraint. This is so because the pp reaction gives the largest con-
tribution to the solar energy production, as can be seen in Table 2.3. Hence,
using the luminosity constraint only as an upper bound would imply that the
pp flux cannot exceed its SSM prediction by more than 9%, while completely
removing this constraint allows for a much larger pp flux. The pep flux is
also severely affected due to its strong correlation with the pp flux, Eq. (2.48).
On a smaller scale the CNO fluxes are also affected, mainly as an indirect
effect due to the modified contribution of the pp and pep fluxes to the Gal-
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Figure 2.3: Same as Fig. 2.2 but without the luminosity constraint, Eq. (2.49).

lium and Chlorine experiments, which leads to a change in the allowed CNO
contribution to these experiments. Thus in this case we get:

fpp = 1.04± 0.08 [+0.22
−0.20] ,

f7Be = 0.97+0.04
−0.05 [±0.12] ,

fpep = 1.05± 0.08 [+0.23
−0.20] ,

f13N = 1.7+2.8
−1.0 [+8.4

−1.6] ,

f15O = 0.6+0.7
−0.4 [≤ 2.6] ,

f17F ≤ 15 [47] .

(2.56)

The determination of the 8B and hep fluxes (as well as the oscillation param-
eters) is basically unaffected by the luminosity constraint.

Interestingly, the idea that the Sun shines because of nuclear fusion reac-
tions can be tested accurately by comparing the observed photon luminosity
of the Sun with the luminosity inferred from measurements of solar neutrino
fluxes. We find that the energy production in the pp-chain and the CNO-cycle
without imposing the luminosity constraint are given by:

Lpp-chain

L�
= 1.03+0.08

−0.07 [+0.21
−0.18] and

Lcno

L�
= 0.008+0.005

−0.004 [+0.014
−0.007] . (2.57)

Comparing Eqs. (2.55) and (2.57) we see that the luminosity constraint has
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Figure 2.4: Marginalized one-dimensional probability distributions for the best
determined solar fluxes in our analysis as compared to the predictions for the
two SSMs in Ref. [2].

only a limited impact on the amount of energy produced in the CNO-cycle.
However, as discussed above, the amount of energy in the pp-chain can now
significantly exceed the total quantity allowed by the luminosity constraint.
Altogether we find that the present value for the ratio of the neutrino-inferred
solar luminosity, L�(neutrino-inferred), to the photon luminosity L� is:

L�(neutrino-inferred)

L�
= 1.04[+0.07

−0.08] [+0.20
−0.18] . (2.58)

Thus we find that, at present, the neutrino-inferred luminosity perfectly agrees
with the measured one, and this agreement is known with a 1σ uncertainty of
7%, which is a factor two smaller than the previous best determination [81].

2.3.3 Comparison with Solar Models

Next we compare the results of our determination of the solar fluxes with
the expectations from the solar models, SSM=GS (for SFII-GS98) and SSM=AGS
(for SFII-AGSS09). To construct the prior distribution of the fluxes in the
models we use the predictions 〈f ssm

i 〉 for the fluxes, the relative uncertainties
σssm
i and their correlations ρssmij in both models as obtained from Refs. [2].

The prior distribution π(f |SSM) with maximum entropy (i.e., minimum in-
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formation) satisfying these constraints is a multivariate normal distribution.
In Fig. 2.4 we show the marginalized one-dimensional probability distributions
for the solar neutrino fluxes as determined by our analysis including the lumi-
nosity constraint, together with the corresponding prior distributions for the
two SSMs.

Comparison between the two models can be achieved by calculating the
posterior odds, given data DDD, simply using Bayes’ theorem. As described in
Sec. 2.2.1 for models with equal prior distributions this is quantified in terms
of the Bayes factor in Eq. (2.39) giving the ratio of the evidences. Here we
compute the evidences Zssm as in Eq. (2.36) with the prior distributions for the
fi in each model described above and the likelihood function as in Eq. (2.43)
where now Oi(ω) are the model predicted values for all these observables
obtained for a given set of values of the fluxes.

Our calculation shows that ln(B) = lnZgs/Zags = 0.00 ± 0.05, meaning
that the data has absolutely no preference for either model (as we will see in
the next chapter this slightly changes with the new generation of B16 SSM’s of
Ref. [1]). Quantitatively this result is driven by the most precisely measured
8B flux, which, as seen in Fig. 2.4, lies right in the middle of the predictions
of SFII-GS98 and SFII-AGSS09. In what respects the possible discriminat-
ing power from the other precisely measured fluxes, in particular 7Be and
indirectly pp and pep, one must realize that within the SSMs the fluxes orig-
inating from the pp-chain are rather correlated among them; therefore, after
the determination of the 8B flux is imposed the posterior predictions of all the
other pp-chain fluxes are also pushed towards the average of the two models,
essentially making them indistinguishable with respect to measurements of
these fluxes. In order to estimate how the correlations predicted by the SSM
affect the comparison of the solar models, we define two new schemes GS′ and
AGS′ where such correlations have been removed, i.e., ρssmij = δij. In this case
we find ln(B) = lnZgs′/Zags′ = 0.2±0.1, meaning that even without the effect
of the pp-chain correlations present data are unable to break the degeneracy
between models implied by the 8B measurement.

On the other hand, the CNO fluxes are rather uncorrelated with the pp-
chain fluxes, so even with the “democratic” 8B flux result discussed above
one could aim at discriminating between the solar models by measuring the
CNO fluxes (also taking into account that their expectations strongly differ
between the two models, as seen Fig. 2.4). To quantify this possibility we
repeat our analysis including also an hypothetical future measurement of the
total CNO flux, Φcno = f13NΦref

13N + f15OΦref
15O + f17FΦref

17F, characterized by a
given uncertainty σcno and centered at the prior expectation of one of the
models (for example the SFII-GS98 model, Φ̂cno = 5.24 × 108 cm−2 s−1). We
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plot in Fig. 2.5 the result of this exercise where we show the log of the Bayes
factor as a function of the assumed relative error on Φcno. From this figure we
read that within the present model uncertainties a moderate evidence in favor
of the model whose CNO fluxes have been assumed (SFII-GS98 in this case)
can be achieved by a measurement of such fluxes with σcno = 5% accuracy.
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Figure 2.5: Bayes factor as a function of the assumed relative error on Φcno.
The bars give the numerical uncertainty of our calculations and the curve is a
cubic interpolation. The dashed lines marks the limits for weak and moderate
evidence of the Jeffreys scale, respectively.

2.4 Summary

The pioneering proposal of using neutrinos to verify the source of energy
produced in the Sun has led to great experimental efforts in detecting solar
neutrinos in their full energy spectrum. They also helped to establish the
now-standard framework of three massive, flavour-mixed neutrinos because
the apparent deficit in the rate of solar neutrinos detected compared to the
expectations of solar models can be explained by neutrino flavour oscillations
in the Sun with MSW matter effects. In this chapter we have used the latest
data from both solar and non-solar neutrino experiments to perform an up-
dated analysis which allows for the direct determination of the solar neutrino
fluxes independent of solar model. In particular using a Bayesian statistical
approach we have derived the neutrino oscillation parameters and solar fluxes
which better describe the data. We have done so with and without imposing
nuclear physics as the only source of energy generation (the so-called luminos-
ity constraint).
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We find that the 99% uncertainty in the 7Be and pp (and correspondingly
pep) fluxes is about a factor 2 smaller, and about 30% smaller in the 8B flux
compared with the previous analysis. The uncertainty on the total luminosity
due to nuclear physics derived from neutrino data has been reduced by a factor
two and is now, for the first time, below 10%. Furthermore, when comparing
with SSM’s, we have shown that present bounds on CNO neutrino fluxes
are very close to the theoretical 3σ range, whether or not other sources of
energy contribute to the energy generation. At present there are two sets of
SSM’s differing in the input solar composition data used in the construction
of the model. Both variants lead to different predictions for the solar fluxes, in
particular of those produced in the CNO cycle. Comparing those predictions
with our extracted fluxes we confirm that with the present neutrino results
both models yield comparable significance. We have finished by showing that
a future CNO flux measurement with σCNO = 5% uncertainty would be needed
to yield a moderate evidence in favor of one of the two sets.
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Chapter 3

Effects on Solar Modeling

Standard Solar Models (SSMs) are a snapshot in the evolution of a 1 M�
star, calibrated to match present-day properties of the Sun. As a prototype of
main-sequence stars, the study of solar properties and solar modeling allows
us to investigate the stars that are too far to observe. The SSMs built in
1990s demonstrated their great success in the agreement between SSMs and
helioseismic observations, providing strong support to stellar evolution theory,
as well as in the the solution of the solar neutrino problem within the theory
of neutrino oscillation.

The solar surface composition, determined with spectroscopic techniques,
is a fundamental constraint in the construction of SSMs. The development of
three dimensional hydrodynamic models of the solar atmosphere, of techniques
to study line formation under non-local thermodynamic conditions and the
improvement in atomic properties (e.g. transition strengths) led since 2001 to
a downward revision of solar metal abundances [11, 51, 82]. The SSMs based
on the low-Z abundances, however, fail to reproduce all helioseismic probes of
solar properties. This is the so called solar abundance problem [13, 50, 83].
Different proposed modifications to physical processes in SSMs offer, at best,
only partial improvements in some helioseismic probes (e.g. [2, 84–87]). An
alternative possibility is to consider modifications to the physical inputs of
SSMs at the level of the constitutive physics, radiative opacities in particular.

In this chapter we present our contributions to this issue published in
Refs. [1, 88]. We provide assessment of a new generation of SSMs and introduce
a new nonparametric modeling of the solar opacity. It is important to stress
that the original contribution of this thesis to the SSM’s is limited to their
statistical comparison with the data, the improvement in the modeling of the
opacities as well as the development of the methodology to construct SSM’s
which match the heloseismological and neutrino observations. But for all the
calculations presented in this chapter we were using results from the runs of
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the SSM codes of A. Serenelli which are an evolution of those developed by J.
Bahcall and we are far from mastering all the details they contain.

3.1 New Generation of Standard Solar Models

In this section we describe the new generation of SSMs—B16 SSMs built in
Ref. [1] incorporating the latest nuclear rates and standard model refinements.
We will do this in Sec. 3.1.2. But for the sake of completeness, we first review
in Sec. 3.1.1 the basic assumptions and equations generically used in building
SSMs. Finally we provide a statistical comparison of B16 SSMs with solar
data to address the status of the solar abundance problem in Sec. 3.1.3.

3.1.1 Introduction to Standard Solar Models

SSMs are built upon a series of basic assumptions: hydrostatic equilibrium,
equation of state, thermonuclear reactions, energy conservation, energy trans-
port and initial conditions. We shall discuss them below. The discussion is
based on [8, 89, 90].

• Hydrostatic equilibrium. It is assumed that the Sun is spherically sym-
metric and the gravitational force and pressure are locally balanced ev-
erywhere. The condition of mass continuity implies that

dm(r)

dr
= 4πr2ρ , (3.1)

where m(r) is the mass inside radius r. Consider a thin shell at radius r
with thickness dr, the gravitational force on the shell is

g(r) = −Gm(r)dm(r)

r2
, (3.2)

while the force induced by the pressure is

f(r) = 4πr2[−P (r + dr) + P (r)] . (3.3)

By equaling g(r) and f(r) and plugging in Eq. (3.1) we arrive at the
hydrostatic equation

dP (r)

dr
= −Gm(r)ρ(r)

r2
. (3.4)
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dP/dr is always negative, implying that the pressure always decreases
from the core to the surface of the Sun.

• Equation of state. The pressure in the Sun comes from the radiation
of photons, and the thermal motion of electrons and ions called gas
pressure. The radiation pressure can be obtained simply by the integral
of the phase space distribution of photons, which yields

Pr =
1

3
C T 4 , (3.5)

where C is the radiation density constant. When the temperature is high
and the density is low enough, the electrons and ions can be treated as
ideal gas. Their pressure can be approximated by

Pg =
ρ(r)kT

µ(r)
, (3.6)

where µ(r) is the mean molecular weight expressed as

1

µ(r)
=
n(r)

ρ(r)
=

∑
i

ni(1 + Zi)∑
i

mini
, (3.7)

where Zi is the number of free electrons in atom i (1 denotes the number
of nuclei) and mi is the mass of the atom. Defining Xi ≡ mini/

∑
jmjnj

as the mass fraction of atom i, we have the relation

1

µ
=
∑
i

1 + Zi
AimH

Xi , (3.8)

where Ai is the atomic number and mH is the mass of hydrogen atom.
In astrophysics, X, Y, Z are often used to represent mass fraction of
helium, hydrogen and metals respectively. It is straightforward to see
from Eqs. (3.7) and (3.8) that for a completely ionized gas

mH

µ
' 2X +

3

4
Y +

1

2
Z . (3.9)

In the outer part of the Sun where temperature is relatively low, atoms
may not be completely ionized. As a result, µ(r) increases from the core
to the surface of the Sun. In the previous discussion we have treated
electrons and ions as ideal gas. However, in the solar core the density
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is high enough to bring electrons to partially degenerate states. This
requires special treatment of the equation of state.

• Energy conservation. It is assumed the Sun’s luminosity mainly comes
from the nuclear interactions in the solar core. Again consider a spherical
shell of thickness dr at radius r, the contribution to local luminosity from
the shell is

dL(r) = 4πr2ρ(r)εdr , (3.10)

where ε = εn + εg − εν summarizes the energy contribution from nuclear
reactions and gravitational potential and energy loss from neutrinos. We
shall only discuss the nuclear reactions which are dominant in the Sun.

• Thermonuclear reactions. The solar chemical compositions evolve with
the nuclear reactions in the Sun. Consider a typical two-body interaction

a+ b→ c+ d , (3.11)

and define R ≡ 〈σv〉 (v is the relative velocity between nuclei a and b),
the number of interactions per unit time and unit volume is r = nanbR.
The evolution of the number density of a is thus given by

ṅa = −na
∑
b,c

nbRbc +
∑
c,d

ncnd
fcd

Rcd , (3.12)

where fcd = 2 if c and d are identical nuclei and fcd = 1 otherwise.
Eq. (3.12) can also be written in terms of Xa,b,c,d when we transform
number density to mass fraction. If energy Q is generated from this
reaction, by definition the energy coefficient εn = rQ/ρ. The typical
thermal energy of nuclei in the Sun is several keV. Nevertheless, the
nuclei have to overcome the Coulomb barrier of MeV for the reactions
to happen. It seems impossible, but Gamow [91] showed that quantum
tunneling effects are able to penetrate through the barrier with much
lower energy. The tunneling probability is

Prob = p0E
−1/2e−2πη , (3.13)

where η = ZaZbe
2/(~v) and p0 is a constant depending on the relative

angular momentum of reduced mass of the two nuclei. In astrophysics
one often introduces the astrophysical factor (S-factor) defined as

S(E) ≡ σ(E)Ee+2πη (3.14)
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which contains the information of nuclear structure. Following Maxwell
distribution we can write R as

R =
23/2

(µπ)1/2(kT )3/2

∫ ∞
0

σ(E)Ee−E/kTdE

=
23/2

(µπ)1/2(kT )3/2

∫ ∞
0

S(E)Ee−E/kT−2πηdE . (3.15)

where E = µv2/2 has been used with µ as the reduced mass of the
colliding nuclei. There are two competing effects in determining the
reaction rate. One is the small tail of Maxwell distribution and the
other is the increasing tunneling probability at large E. The maximum
rate is reached when the exponential in Eq. (3.15) reaches its maximum
at E = (ZaZb

√
m/8~2e2kT )2/3. This maximum is known as the Gamow

peak. The S-factor S(E) is usually expressed as a Taylor series around
E = 0 [92], i.e.

S(E) = S(0) + S ′(0) · E +
1

2
S ′′(0) · E2 +O(E3) , (3.16)

and is determined by laboratory measurements for many thermonuclear
reactions.

• Energy transport. There are three different ways of energy transport in
stars: radiation, convection and conduction. Conduction plays a role in
the high density stars and supernova cores, but is considered to be less
relevant in the Sun. In the central part of the Sun radiation is the most
efficient transport process while in the outer part convection becomes
important.

The radiative transport is caused by the interaction of photons with elec-
trons, atoms, ions and molecules. Consider a photon flux Fr penetrating
a slab of unit area and thickness dr at the radius r, the momentum
transfer from the photons to the slab is

dp =
dFr
c

=
Frdr

λc
, (3.17)

where λ is the mean free path of photons. The momentum transfer
is just the loss of radiation pressure Pr in the slab. We can define the
opacity coefficient κ ≡ 1/(ρλ) which describes the probability of photons
experiencing one interaction per unit length. In terms of this definition
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we can write
dPr
dr

= −κρFr
c

. (3.18)

The radiative opacity κ depends on temperature, density and chemical
compositions explicitly. We will discuss the solar opacity profile and how
we have improved the modeling of the opacity profile in Sec. 3.2. Given
the local luminosity L(r) = 4πr2Fr and Eq. (3.5) we have

dT

dr
= − 3κρ

4acT 3

L

4πr2
. (3.19)

This is the equation responsible for radiation energy transport.

When the radiative opacity increases too much, the radiative tempera-
ture gradient increases so much that the solar matter becomes convec-
tively unstable. In the Sun there is a large convective region below the
photosphere. The treatment of convective transport is extremely com-
plicated because the gas flow in the convective region is turbulent and
varies in a chaotic way. A detailed descripion of convection is beyond
the scope of this thesis, but we refer readers who are interested to [90].

• Initial conditions. It is assumed that the Sun was initially chemically
homogeneous and that mass loss is negligible at all times during its
evolution up to the present solar age, τ� = 4.57 Gyr. As part of the
initial conditions we also need the initial solar composition. It can be
inferred from the observations of present solar photosphere and from
meteorites. By analysis of the light spectrum from the Sun we can infer
the chemical composition in the photosphere. However, the photospheric
values may not represent the initial composition in the protosolar nebula.
On the one hand, light elements are burned in the low temperature
photosphere. On the other hand, gravitational diffusion causes heavier
metals to sink relative to hydrogen, and the temperature gradient also
causes lighter elements to rise relative to heavier ones which is called
thermal diffusion [47]. As for the abundances which are inferred from
meteorites the problem is that volatile elements (H, He, C, N, O) have
been depleted in the meteorites and only refractory elements remain so
one does not have the complete set of relative abundances using meteorite
data only. But using the measured abundance of some of the refractory
elements (Mg, Al, Si) both in the photosphere and in the meteorite one
can then normalize the meteorite data. Up to now there has been very
good agreement between the photospheric and meteoritic determination
of element abundances, especially for refractory elements [89].
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• Adjustable quantities and constraints. The SSM is required to match, at
τ�, the solar luminosity L�, the solar radius R�, and the photospheric
(surface) metal-to-hydrogen mass fraction (Z/X)�. The three adjustable
quantities in the model are the initial helium and metal mass fractions
Yini and Zini respectively, and the parameter αMLT of the mixing length
theory (or its equivalent in other prescriptions of convection). αMLT is
mostly related to R�, Yini to L� and Zini to (Z/X)�, although the three
adjustable quantities depend on the three observational constraints and
are therefore correlated with each other.

In summary, to solve the above equations and build SSMs, one needs the fol-
lowing input quantities: the solar age, diffusion, luminosity, important nuclear
rates, and element abundances. We shall list them in the next section when
we introduce a new generation of SSMs.

3.1.2 B16 Standard Solar Models

In [2] a generation of SSMs was built using the nuclear reaction rates
recommended in the Solar Fusion II paper ([92]; hereafter A11). For simplicity,
we refer to them as the SFII SSMs. Here we present the new generation of
SSMs, Barcelona 2016 or B16 for short. B16 models share with the SFII models
much of the physics. However, important changes include updates in some
nuclear reaction rates and, most notably, a new treatment of uncertainties
due to radiative opacities. Below we describe in some detail the differences
between the older SFII and the new B16 generations of SSMs. This section is
based on our work [1].

Composition: The two central sets of solar abundances we use in this
work are the same employed in [2]:

• GS98: Photospheric (volatiles) + meteoritic (refractories) abundances
from [10]. The metal-to-hydrogen ratio used for the calibration is (Z/X)� =
0.0229,

• AGSS09met: Photospheric (volatiles) + meteoritic (refractories) abun-
dances from [11]. The metal-to-hydrogen ratio used for the calibration
is (Z/X)� = 0.0178.

Individual abundances of the most relevant elements for solar modeling for the
different compositions we use are given in Table 3.1.

Equation of state: SFII models used the equation of state (EoS) by
OPAL [93] in its 2005 version. This EoS has one slight disadvantage: the
mixture of metals includes only C, N, O and Ne and their relative abundances

39



Element GS98 AGSS09met
C 8.52± 0.06 8.43± 0.05
N 7.92± 0.06 7.83± 0.05
O 8.83± 0.06 8.69± 0.05
Ne 8.08± 0.06 7.93± 0.10
Mg 7.58± 0.01 7.53± 0.01
Si 7.56± 0.01 7.51± 0.01
S 7.20± 0.06 7.15± 0.02

Ar 6.40± 0.06 6.40± 0.13
Fe 7.50± 0.01 7.45± 0.01

(Z/X)� 0.02292 0.01780

Table 3.1: Solar abundances from Ref. [10] and Ref. [11] given as log εi ≡
logNi/NH + 12. Only elements that most strongly contribute to uncertainties
in SSM modeling are included.

S(0) Uncert. % ∆S(0)/S(0) Ref.
S11 4.03 · 10−25 0.5% [95–97]
S17 2.13 · 10−5 4.7 +2.4% [98]
S114 1.59 · 10−3 7.5 -4.2% [99]

Table 3.2: Astrophysical S-factors (in units of MeV b) and uncertainties up-
dated in Ref. [1].

are hardwired in the tables provided and cannot be modified. FreeEOS, the
EoS developed by A. Irwin [94], allows us to overcome this difficulty. Due to
its flexibility, and its excellent performance when compared to OPAL EoS, we
adopt FreeEOS as our standard EoS for the B16 SSMs. For the first time,
EoS tables calculated consistently for each of the compositions used (GS98
and AGSS09met) are used in the solar calibrations.

Nuclear rates: The most relevant changes in the B16 SSMs compared to
SFII models arise from updates in the nuclear reaction rates. Updates in the
reaction rates are generally introduced as changes in S(0) and, eventually, the
first and higher order derivatives. New S(0) values and errors are summarized
in Table 3.2 together with the fractional changes in S(0) with respect to A11.
Rates not listed in Table 3.2 are taken from A11 and remain unchanged with
respect to the SFII SSMs. We also present in Table 3.3 a summary of other
main cross sections and input parameters used to construct the SSMs.

Treatment of opacity uncertainties: We postpone the discussion until
Sec 3.2. We simply mention here that the results presented in this section
correspond to the linear parametrization of the opacity uncertainty.
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Qnt. Central value σ (%) Ref.
3He(3He, 2p)4He 5.21 MeV b 5.2 1
3He(4He, γ)7Be 5.6 · 10−4 MeV b 5.2 1
7Be(e−, νe)

7Li Eq (40) SFII 2.0 1
3He(p, e+νe)

4He 8.6 · 10−20 MeV b 30.2 1
16O(p, γ)17F 1.06 · 10−2 MeV b 7.6 1

τ� 4.57 · 109 yr 0.44 2
diffusion 1.0 15.0 2

L� 3.8418 · 1033 erg s−1 0.4 2

Table 3.3: Central values for the main input parameters and the corresponding
standard deviation. (1) A11, (2) [12].

Next we present the main results of the B16 SSMs for GS98 and AGSS09met
compositions and discuss differences with respect to the previous SFII models.

Helioseismology: Two helioseismic quantities widely used in assessing
the quality of SSMs are the surface helium abundance YS and the location of
the bottom of the convective envelope RCZ. Both are listed in Table 3.4 to-
gether with the corresponding values inferred from seismic observations. The
model errors associated to these quantities are larger in B16 models than pre-
viously computed [12] generations of SSMs because of the different treatment
of uncertainties in radiative opacities. Compared to SFII models, we find a
small decrease in the predicted YS by 0.0003 for both compositions and a de-
crease in the theoretical RCZ by 0.0007 R�, also for both compositions. The
correlation between these quantities in SSMs is ρ(YS, RCZ) = −0.35 and −0.41
for B16-GS98 and B16-AGSS09met models respectively, as obtained from the
MC calculations.

Fig. 3.1 shows the fractional sound speed difference as a function of solar
radius. The solar sound speed differences have been obtained for each of the
two SSMs by performing new sound speed inversions, using the appropriate
reference solar model, based on the BiSON-13 dataset (a combination of Bi-
SON+MDI data) as described in [100]. The resulting δc/c curves are not too
different with respect to SFII models.

Neutrino fluxes: The most relevant updates in the B16 SSMs are related
to updates in several key nuclear reaction rates that have a direct effect on the
predicted solar neutrino fluxes. The detailed results for all the neutrino fluxes
are summarized in Table 3.5.

SSM predictions for Φ(8B) and Φ(7Be) are reduced for both GS98 and
AGSS09met compositions by about 2% with respect to previous SFII SSM
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Figure 3.1: Fractional sound speed difference δc/c = (c� − cmod)/cmod. Grey
shaded regions corresponds to errors from the inversion procedure. Red shaded
region corresponds to errors from the model variation which we chose to plot
around the AGSS09met central value (solid red line). An equivalent relative
error band holds around the central value of the GS98 central value (solid blue
line) which we do not plot for the sake of clarity (it is shown in the left panel
in Fig. 3.3, linear opacity band) . Dashed line shows, for comparison, results
for the older SFII-GS98 SSM.
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Qnt. B16-GS98 B16-AGSS09met Solar
YS 0.2426± 0.0059 0.2317± 0.0059 0.2485± 0.0035
RCZ/R� 0.7116± 0.0048 0.7223± 0.0053 0.713± 0.001
〈δc/c〉 0.0005+0.0006

−0.0002 0.0021± 0.001 0a

αMLT 2.18± 0.05 2.11± 0.05 -
Yini 0.2718± 0.0056 0.2613± 0.0055 -
Zini 0.0187± 0.0013 0.0149± 0.0009 -
ZS 0.0170± 0.0012 0.0134± 0.0008 -
YC 0.6328± 0.0053 0.6217± 0.0062 -
ZC 0.0200± 0.0014 0.0159± 0.0010 -

Table 3.4: Main characteristics for the different SSMs with the correspondent
model errors and the values for the observational values (when available) and
their error. The observational values of YS is taken from [13] and RCZ from
[14]. The solar value of δc/c. is zero, by construction.

due to the larger p(p, e+νe)d rate (for Φ(8B) this is partially compensated by
the increase in the 7Be(p, γ)8B rate). But the most important changes in the
neutrino fluxes occur for Φ(13N) and Φ(15O), in the CN-cycle. These fluxes are
potentially excellent diagnostics of properties of the solar core. In particular,
their dependence on the metallicty is two-fold: through opacities much in the
same manner as pp-chain fluxes, and also through the influence of the added
C+N abundance in the solar core. This latter dependence makes these fluxes
a unique probe of the metal composition of the solar core. The expectation
values in the B16 SSMs are about 6% and 8% lower than for the previous SFII
models for Φ(13N) and Φ(15O) respectively. This results from the combined
changes in the p+p and 14N+p reaction rates (Table 3.2).

3.1.3 Statistical Comparison of B16 Models

The general procedure which we will follow is to use MC generated sets of
SSMs obtained for different choices of the model input parameters. These are
20 quantities: the Sun luminosity – L�– , the Sun diffusion, the Sun age –τ�–
, 8 Nuclear Rates – S11, S33, S34, S17, Se7, S114, Shep, S116 –, and 9 Element
Abundances – C, N, O, Ne, Mg, Si, S, Ar, Fe –.

The sets of models are generated according to priors for these inputs which
reflect our knowledge of those (knowledge which is independent of the data
used in our analysis). Generically the priors are assumed to be Gaussian
distributed. The assumed priors for the first 11 inputs are common to all
models generated, while for the abundances there are two different sets of
priors corresponding to high-Z and low-Z compositions leading to the B16-

43



Flux B16-GS98 B16-AGSS09met Solara Chg.

Φ(pp) 5.98(1± 0.006) 6.03(1± 0.005) 5.97
(1+0.006)
(1−0.005) 0.0

Φ(pep) 1.44(1± 0.01) 1.46(1± 0.009) 1.45
(1+0.009)
(1−0.009) 0.0

Φ(hep) 7.98(1± 0.30) 8.25(1± 0.30) 19
(1+0.63)
(1−0.47) -0.7

Φ(7Be) 4.93(1± 0.06) 4.50(1± 0.06) 4.80
(1+0.050)
(1−0.046) -1.4

Φ(8B) 5.46(1± 0.12) 4.50(1± 0.12) 5.16
(1+0.025)
(1−0.017) -2.2

Φ(13N) 2.78(1± 0.15) 2.04(1± 0.14) ≤ 13.7 -6.1
Φ(15O) 2.05(1± 0.17) 1.44(1± 0.16) ≤ 2.8 -8.1
Φ(17F) 5.29(1± 0.20) 3.26(1± 0.18) ≤ 85 -4.2

Table 3.5: Model and solar neutrino fluxes. Units are: 1010 (pp), 109 (7Be),
108 (pep, 13N, 15O), 106 (8B,17 F) and 103(hep) cm−2s−1. Solar values from
Eq.(2.54). Last column corresponds to the relative changes (in %) with respect
to SSMs based on SFII nuclear rates, which are almost independent of the
reference composition.

GS98 and B16-AGSS09met model subsets respectively.
Following the procedure outlined in Sec. 2.2.1 we confront these models

with the data from helioseismology and neutrino oscillation experiments. They
amount to an effective number of 32 data points from helioseismic data plus
a large number of points from the global analysis of neutrino oscillation data
as described in Sec. 2.2.2 with which we build the likelihood function

− 2 lnL(ΘΘΘ) =
∑
i,j

(Omod
i (ΘΘΘ)−Odat

i )

σdat
i

(ρdat)−1
ij

(Omod
j (ΘΘΘ)−Odat

j )

σdat
j

(3.20)

where Omod
i (ΘΘΘ) are the model predicted values for all these observables ob-

tained by MC generation for a given set of values of the model inputs ΘΘΘ. The
correlation matrix ρdat

ij = δij for i, j = 1, 32 but it is not diagonal for all the
other entries which correspond to the neutrino oscillation data.

With these likelihood functions we can obtain the posterior distribution
for some (or all) of the input parameters. These posterior distributions will
quantify how the inclusion of this additional data affects our knowledge of
those properties of the Sun.

Also, as described in Sec. 2.2.1, we can use the prior predictive distribution
corresponding to the two variants of the SSM’s to carry out a test of signif-
icance and to obtain their corresponding p-values. For this, we define the
statistical test T (O) (where O is an n-dimensional vector containing possible
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values for the n observables):

T (O) = (O − 〈Omod〉)T (Cdat + Cmod)−1(O − 〈Omod〉) (3.21)

where Cdat,ij = ρdat
ij σ

dat
i σdat

j is the covariance matrix associated to the experi-
mental uncertainties, and

Cmod,ij = 〈(Omod
i − Ōmod

i )(Omod
j − Ōmod

j )〉
≡ 〈(Omod

i − Ōmod
i )〉ρmod,ij〈(Omod

i − Ōmod
i )〉 (3.22)

is the model covariance matrix obtained from the MC generated model pre-
dictions by sampling over the model input priors about their means Ōmod

i ≡
〈Omod

i 〉.
The probability distribution of T (O) can be determined from the MC

model predictions by generating pseudo experimental results O normally dis-
tributed according to Cdat around each Omod in the MC generated model
samples, and computing for each pseudo experimental result the correspond-
ing value of T . We find that, as expected, the probability distribution of T (O)
follows very closely a χ2

n-distribution.
A comparison of B16 SSMs and data is summarized in Table 3.6 (see also

LIN-OP sections of Tables. 3.7 and 3.8).
Considering the surface helium abundance YS and the location of the bot-

tom of the convective envelope RCZ only, the comparison yields T (O) = 0.91
and T (O) = 6.45 for GS98 and AGSS09met compositions that translate into
0.5σ and 2.1σ differences between models and data.

GS98 AGSS09met
Case dof T (O) p-value (σ) T (O) p-value (σ)

YS +RCZ only 2 0.9 0.5 6.5 2.1
δc/c only 30 58.0 3.2 76.1 4.5

δc/c no-peak 28 34.7 1.4 50.0 2.7
Φ(7Be) + Φ(8B) 2 0.2 0.3 1.5 0.6

all ν-fluxes 8 6.0 0.5 7.0 0.6
global 40 65.0 2.7 94.2 4.7

global no-peak 38 40.5 0.9 67.2 3.0

Table 3.6: Comparison of B16 SSMs against different ensembles of solar ob-
servables.

A quantitative assessment of the agreement between model and solar sound
speeds is not straightforward. It requires a proper evaluation of model errors
and correlations. Also, given a set of observed frequencies, extraction of the
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sound speed profile is sensitive to uncertainties in the measured frequencies,
numerical parameters inherent to the inversion procedure and the solar model
used as a reference model for performing the inversion. Such detailed anal-
ysis was carried out in [101], in which the SSM response to varying input
parameters was modeled using power-law expansions and the three uncertain-
ties related to the extraction of δc/c from observed data were taken directly
from [102].

Using model and inversion uncertainties as described above, we compare
how well the predicted sound speed profiles of B16-GS98 and B16-AGSS09met
agree with helioseismic inferences. For this, we use the same 30 radial points
employed in [101] (shown in Fig. 3.3). We use the models in the MC simula-
tions to obtain the covariance matrix for these 30 points and assume inversion
uncertainties at different radii as uncorrelated. The model predicted values
are however strongly correlated as shown in the lower left panel in Fig. 3.3
where we plot a graphical display of the correlations between the 30 values of
the sound speed as predicted by the models for the linear parametrization of
the intrinsic opacity uncertainty assumed in this section. Results are shown in
the second row of Table 3.6. For 30 degrees-of-freedom (dof), B16-GS98 gives
T (O) = 58, or a 3.2σ agreement with data. For B16-AGSS09met results are
T (O) = 76.1, or 4.5σ. Below we analyze in some detail the significance of
these results.

It seems apparent from Fig. 3.1 that, at almost all radii, the sound speed
profile of B16-GS98 fits well within the 1σ uncertainties. This is true even for
the peak right below the convective zone at r/R� ≈ 0.6− 0.7. But looks can
be deceiving. The difference between B16-GS98 and the Sun is dominated by
wiggles of relatively small amplitude. However, changes in input quantities,
including radiative opacities, do not lead to variations in SSM sound speeds
on small radial scales, so values of the sound speed at different radii in solar
models are strongly correlated as shown in lower left panel in Fig. 3.3. Includ-
ing these correlations by means of a covariance matrix in the calculation of
T (O) explains why the large value T (O) = 58 is obtained for the B16-GS98
which, apparently, fits well within 1σ contours. This results reflects the fact
that, within the framework of SSMs and the treatment of uncertainties used
here, particularly of opacities, it is not possible to find a combination of input
parameters that would make the wiggles go away. To confirm this, we checked
that when the covariance matrix is assumed diagonal, i.e. correlations are
neglected, T (O) = 23.6 for the sound speed profile of B16-GS98, well within
a 1σ result as expected by a naive look at Fig. 3.1.

For B16-AGSS09met, the discrepancy with the solar sound speed is dom-
inated by the large and broad peak in 0.35 < r/R� < 0.72. In this case,
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curiously, correlations in the model sound speed improve somehow the agree-
ment with the data (but it is still rather bad). If, as a test, sound speed
correlations are neglected for this model, we obtain a larger T (O) = 100.4,
i.e. the opposite behavior than for B16-GS98.

It is important to notice that in the case of B16-GS98, the largest contri-
bution to the sound speed T (O) comes from the narrow region 0.65 < r/R� <
0.70 that comprises 2 out of all the 30 points. If these two points are removed
from the analysis T (O) is reduced from 58 to 34.7, equivalent to a 1.4σ agree-
ment with the solar sound speed (entry identified as δc/c no-peak in Table 3.6).
For B16-AGSS09met this test leads to a 2.7σ result. This exercise highlights
the qualitative difference between SSMs with different compositions; it shows
that for GS98 the problem is highly localized whereas for AGSS09met the dis-
agreement between SSMs and solar data occurs at a global scale, i.e. the solar
abundance problem.

On the other hand, current determination of solar neutrino fluxes are well
described by models with any of the two solar compositions. This is not very
different from what we had with the SFII model fluxes described in the previous
chapter. We find now that T (O) values are 6.01 (0.5σ) and 7.05 (0.6σ) for B16-
GS98 and B16-AGSS09met models respectively for all neutrino fluxes. This
comparison is clearly dominated by the best-determined Φ(8B) and Φ(7Be)
fluxes, where we find T (O)(GS98) = 0.2 (0.3σ) and T (O)(AGSS09met) =
1.45 (0.6σ) for these two fluxes(see Table 3.6).

What is the performance of both B16 SSMs when all the observables dis-
cussed before are used for the comparison? The results for global analysis
are summarized in the last two rows of Table 3.6 when the two sound speed
points in the region 0.65 < r/R� < 0.70 are excluded or not. The final T (O)
values are dominated by the sound speed for both models, although YS and
RCZ are also relevant for B16-AGSS09met. The global analysis yields a not
too good 2.7σ result for B16-GS98. However, this is strongly linked to the
behaviour of the sound speed profile right below the convective zone, as ex-
plained in Sect. 3.1.2. Excluding two points in the sound speed lead to an
overall, comforting, 0.9σ agreement of this model with solar data. In the case
of B16-AGSS09met, the overall agreement with the data is quite poor, at 4.7σ,
which improves to only 3.0σ if the critical points in the sound speed profile
are excluded. This is still a poor agreement with data.

The corresponding Bayes factors for the two models are given in the first
column in Table 3.8. From the table we conclude that the B16-AGSS09met
models are always somewhat disfavoured with respect to the B16-GS98 model
by all data sets but the most statistical significant effect is driven by the sound
speed profile data.
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3.2 Improving Solar Opacity Modeling

We have seen in the previous section that B16-GS98 model is not in very
good agreement with the global analysis combining both helioseismic and solar
neutrino neutrino data and the agreement of B16-AGSS09met model is much
worse. We conclude that the solar abundance problem still exists in the new
generation of SSMs. Motivated by the persistence of the problem we then
move to discuss possible improvements on the methodology in solar model
construction. For sake of illustration we make an introduction to the solar
opacity profile in Sec. 3.2.1. After that we show in Sec. 3.2.2 the treatment
of opacity profile in constructing B16 SSMs as well as a new nonparametric
modeling of the solar opacity. Finally we discuss how it can affect the statistical
comparison between the models and with the helioseismic data in Sec. 3.2.3.

3.2.1 Introduction to Solar Opacity Profile

A fundamentally important physical ingredient in solar models that cannot
be quantified by just one parameter is the radiative opacity, which is a com-
plicated function of temperature (T ), density (ρ) and chemical composition of
the solar plasma expressed here in terms of the helium (Y ) and heavy elements
mass fractions (Zi, where i runs over all metals included in opacity calcula-
tions). In the B16 calculations, we used as a reference the atomic opacities
from OP [103] complemented at low temperatures by molecular opacities from
Ref. [104]. The magnitude and functional form of its uncertainty is currently
not well constrained in available opacity calculations. As a result, represen-
tation of the uncertainty in radiative opacity by a single parameter [105] or
by taking the difference between two alternative sets of opacity calculations
[12, 101] are strong simplifications, at best. In the construction of the B16
models we followed a general and flexible approach based on opacity kernels
originally developed by Ref. [106] and later on by Ref. [107], which we describe
next. This section is mainly based on our work Ref. [88].

The reference opacity calculation κ̄(ρ, T, Y, Zi) can be modified by a generic
function of T, ρ, Y and Zi. For simplicity, we assume that opacity variations
are parametrized as a function of T alone such that

κ(ρ, T, Y, Zi) = [1 + δκI(T )] κ(ρ, T, Y, Zi) (3.23)

where δκI(T ) is an arbitrary function that we call intrinsic opacity change.
The Sun responds linearly even to relatively large opacity variations δκI(T )
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[106, 107]. Thus, the fractional variation of a generic SSM prediction

δQ ≡ Q/Q̄− 1, (3.24)

where Q (Q̄) corresponds to the modified (reference) value, and can be de-
scribed as

δQ =

∫
dT

T
KQ(T )δκI(T ) (3.25)

by introducing a suitable kernel KQ(T ) that describes the response of Q to
changes in the opacity at a given temperature. We determine the kernels
KQ(T ) numerically by studying the response of solar models to localized opac-
ity changes as it was done in Ref. [106].

The evaluation of δQ is subject to the choice we make for δκI(T ). In
Ref. [108] and Ref. [105] the opacity error was modeled as a 2.5% constant
factor at 1σ level, comparable to the maximum difference between the OP
and OPAL [109] opacities in the solar radiative region. Ref. [107] showed that
this prescription underestimates the contribution of opacity uncertainty to the
sound speed and convective radius error budgets because the opacity kernels
for these quantities are not positive definite and integrate to zero for δκ(T ) =
const. Later on, Ref. [101] considered the temperature-dependent difference
between OP and OPAL opacities as 1σ opacity uncertainty. However, it is by
no means clear that this difference is a sensible measure of the actual level of
uncertainty in current opacity calculations.

Based on the previous reasons, in the B16 models we followed a different
approach inspired by the most recent experimental and theoretical results
and some simple assumptions. The contribution of metals to the radiative
opacity is larger at the bottom of the convective envelope (∼ 70%) than at
the solar core (∼ 30%). Moreover, at the base of the convective envelope,
relevant metals like iron are predominantly in an L-shell configuration, for
which atomic models are more uncertain than for the K-shell configuration that
predominates at solar core conditions. Also, in a recent theoretical analysis
of line broadening modeling in opacity calculations, Ref. [110] has found that
uncertainties linked to it are larger at the base of the convective envelope
than in the core. These arguments suggest that opacity calculations are more
accurate at the solar core than in the region around the base of the convective
envelope. It is thus natural to consider an uncertainty parametrization that
allows opacity to fluctuate by a larger amount in the external radiative region
than in the center of the Sun.
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3.2.2 Linear Parametrization vs Gaussian Process

In building B16 SSMs described in the previous section we adopted the
following parametrization for the intrinsic opacity change (relative to some
reference value):

δκI(T ) = a+ b
log10(TC/T )

∆T

(3.26)

where ∆T = log10(TC/TCZ) = 0.9, TC and TCZ are the temperatures at the
solar center and at the bottom of the convective zone respectively. This equa-
tion is applied only up to the lower regions of the convective envelope, where
convection is adiabatic and changes in the opacity do not modify the solar
structure. Opacity changes in the uppermost part of the convective envelope
and atmosphere are absorbed in the solar calibration by changes in the mix-
ing length parameter and, in sound speed inversions, by the surface term. In
the context of SSMs, they will not produce changes in the solar properties
considered in the present work.

Technically, the opacity uncertainty is incorporated in our model gener-
ation by extending the parameter space with 2 more independent inputs, a
and b, each with a gaussian prior with zero mean and variances σa and σb,
respectively. This corresponds to assuming that the opacity error at the solar
center is σmin = σa, while it is given by σout '

√
σ2
a + σ2

b at the base of the
convective zone. We fix σin = σa = 2% which is the average difference of the
OP and OPAL opacity tables. This is also comparable to differences found
with respect to the new OPAS opacity tables [111] for the AGSS09 solar com-
position, the only one available in OPAS. The more recent OPLIB tables from
Los Alamos [112] show much larger differences in the solar core, about 10 to
12% lower than OP and up to 15% lower than OPAS. However, OPLIB opaci-
ties lead to solar models that predict too low YS and Φ(7Be) and Φ(8B) fluxes
that cannot be reconciled with data. For σout we choose 7% (i.e. σb = 6.7%),
motivated by the recent experimental results of [113] that have measured the
iron opacity at conditions similar to those at the base of the solar convective
envelope and have found a 7% ± 4% increase with respect to the theoretical
expectations. The resulting prior for the intrinsic opacity profile uncertainty
is shown in the upper left panel in Fig. 3.2 for both B16 models. Given the
generated values for those two parameters we construct the function δκI(T )
as in Eq. (3.26) and with that we compute the corresponding change in the
output quantities as in Eq. (3.25).

As we have seen in the previous section it turns out that this ad-hoc linear
parametrization of the intrinsic opacity uncertainty is not flexible enough to ac-
commodate the tension between B16-AGSS09met model and data (especially
sound speed data). This parametrization was chosen for its simplicity, whereas
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in fact the shape of the opacity uncertainty function is unknown. Thus, next
we turn to a more general modeling of the intrinsic opacity uncertainty based
on a Gaussian Process approach.

Our goal is to define the uncertainty of the opacity profile without using
parametrized functions and to reconstruct the intrinsic opacity change δκI(T )
that can lead to a better agreement with the data. In order to do this, fol-
lowing the discussion for linear opacity, we assume that δκI(T ) is a gaussian
variable with mean µP (T ) ≡ 0 and with a temperature dependent variance
σ(T ) which allows for 2% uncertainty in the solar center and 7% at the base
of the convective zone, i.e.:

σ(T ) = 0.02 + (0.07− 0.02) · log10(TC/T )

∆T

. (3.27)

As the values of the opacity at two different temperatures T and T ′ may be not
independent, we introduce a prior covariance function CP (T, T ′). A possible
choice is

CP (T, T ′) = σ(T )σ(T ′)ρ(T, T ′), (3.28)

with

ρ(T, T ′) = exp

[
−1

2

(
log10 T − log10 T

′

∆T L

)2
]
. (3.29)

Here L determines the characteristic correlation length over which δκI(T ) can
vary significantly and it is the only hyperparameter in our analysis. According
to the above definition, L = 1 means maximum correlation between the opacity
at the edge of the convective zone and at the center. If L is too large the
correlation is too strong and the model is over constrained. If, on the other
hand, L is too small, we are allowing opacity errors to dominate the output
of solar models, and we can barely learn anything from the data. Moreover,
there is a physically motivated lower bound for L given by the temperature
range over which the opacity can vary substantially. In the solar interior
|∂ lnκ/∂ lnT | < 2 [112]. From this, the smallest temperature range over which
∆ lnκ ≈ 1 is ∆ lnT ≈ 0.5, i.e. Lmin ≈ 0.2.

To implement the Gaussian Process intrinsic opacity uncertainty in our
analysis we start by choosing a set of N points in which we evaluate the
function δκIi = δκI(Ti). We take N = 11 and choose the points to be uniformly
distributed in log10 T between 6.3 and 7.2. The parameter space for model
generation is thus extended with 12 more input parameters: the length L and
the 11 δκIi values. For the correlation length we assume a uniform prior in
log10 L between log10 0.2 and log10 1. The values δκIi are generated according
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Figure 3.2: Priors for the intrinsic opacity change (upper panels), the com-
position opacity change, Eq. (3.33) (second row panels), and the total opacity
profile in absolute value (third row panels) and relative to the central value for
the GS98 model (lower panels). Left correspond to the linear parametrization
of the intrinsic opacity uncertainty while right corresponds to the Gaussian
Process one. The lower panels also show the curve (same in both panels) with
the opacity difference due to the different compositions at fixed physical prop-
erties (T and ρ) (the fixed values of T and ρ are those of the GS98 model so
the reference GS98 opacity profile is common to all curves in the lower panels).

.
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to prior distribution defined by Eqs. (3.27-3.29), together with µP (T ) ≡ 01.
Given a set of values for the 11 δκIi’s we construct the full function δκI(T )
by linear interpolation between these values and with that we compute the
corresponding change in the output predictions as in Eq. (3.25). The resulting
prior distribution of the intrinsic opacity change is shown in the upper right
panel of Fig. 3.2. As seen in the figure, the ranges of uncertainty profiles for
the linear parametrization and the GP opacity are very similar. They do,
however, lead to different conclusions when testing the SSM’s models versus
the data (in particular vs helioseismic data) as described in Sec. 3.2.3.

The properties of the Sun depend on its opacity profile κSSM(T ) that we
define as:

κSSM(T ) = κ(ρ(T ), T, Y (T ), Zi(T )) (3.30)

where ρ(T ), Y (T ) and Zi(T ) describe the density, helium and heavy element
abundances stratifications as a function of the temperature of the solar plasma
in a given SSM. This is indeed the quantity that determines the efficiency of
radiative energy transport and, thus, the temperature gradient at each point
of the Sun and that is plotted in the panels in the third row of Fig. 3.2 for both
B16 models. To better compare the range of prior uncertainty of the opacity
profile with the difference between the central values of the priors of the two
SSM’s, we plot in the lower panels of Fig. 3.2 the same total opacity variation
relative to the central value of the B16-GS98 model. The fractional opacity
difference due to the change of composition only, i.e. compared at fixed T and
ρ, is also shown for reference.

When considering an intrinsic opacity change δκI(T ) and/or other input
parameters in the SSMs are varied, the SSM needs to be recalibrated, thus
obtaining different density and chemical abundances stratifications with re-
spect to the reference SSM. As a consequence, the total variation of the solar
opacity profile is given by:

δκSSM(T ) ≡ κSSM(T )/κSSM(T )− 1 '

' δκI(T ) +
∂ lnκ

∂ ln ρ
δρ(T ) +

∂ lnκ

∂ lnY
δY (T ) +

+
∑
i

∂ lnκ

∂ lnZi
δZi(T ) (3.31)

where δρ(T ), δY (T ) and δZi(T ) are the fractional variations of density and
elemental abundances in the perturbed Sun with respect to the reference SSM,

1We studied the number of points which maximized the smoothness of the output profile
versus computing time and found that increasing N beyond 11 did not yield any better
results.
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evaluated at a fixed temperature T .
As discussed above, the metal abundances Zi(T ) are derived quantities that

have to be obtained as a results of numerical solar modeling. However, when
we consider a modification of the surface composition {zi}, expressed here
in terms of the quantities zi ≡ Zi,S/XS where Zi,S is the surface abundance
of the i−element and XS is that of hydrogen, we can approximately assume
δZi(T ) ' δzi where δzi is the fractional variation of zi with respect to some
reference value. As a consequence, Eq. (3.31) can be rewritten as:

δκSSM(T ) = δκI(T ) + δκZ(T ) +
∂ lnκ

∂ ln ρ
δρ(T ) +

∂ lnκ

∂ lnY
δY (T ) (3.32)

where the composition opacity change δκZ(T ) is defined as:

δκZ(T ) ≡
∑
i

∂ lnκ

∂ lnZi
δzi (3.33)

We define the total opacity change δκ(r) as:

δκ(T ) = δκI(T ) + δκZ(T ), (3.34)

which groups together the contributions to δκSSM(T ) directly related to the
variations of the input parameters.

For completeness, we show in the middle panels of Fig. 3.2 the prior dis-
tributions of the composition opacity changes for both B16-SSMs, calculated
by considering the relative variations of the individual abundances δzj around
their mean values for GS98 and AGSS09met surface compositions. The loga-
rithmic derivatives ∂ lnκ/∂ lnZi can be found in the left panel of Figure 10 in
Ref. [101]. The prior distributions for δκZ(T ) are identical in the left and right
(middle) panels because the adopted procedure for describing the intrinsic
opacity uncertainty does not alter the sampling in surface composition.

3.2.3 Effects on Statistical Tests of Models

We start by performing a test of significance of the two B16 SSMs using
the linear and GP models of the opacity uncertainty described in the previ-
ous section. Results are given in Table 3.7 where we show the value of the
test statistics T for different combination of observables. The results for the
LIN-OP parametrization are the same as already shown in Table 3.6 but we
repeat them here for clarity in the comparison with the GP-OP case. As
seen in the table and previously discussed, global p-values are dominated by
the sound speed for both models, although YS and RCZ are also relevant for
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LIN-OP GP-OP
GS98 AGSS09met GS98 AGSS09met

O n T (O) p-value (σ) T (O) p-value (σ) T (O) p-value (σ) T (O) p-value (σ)
YS +RCZ 2 0.9 0.5 6.5 2.1 0.7 0.35 6.9 2.2

δc 30 58.0 3.2 76.1 4.5 35.6 1.2 40.2 1.6
all ν-fluxes 8 6.0 0.5 7.0 0.6 5.9 0.44 7.0 0.6

global 40 65.0 2.7 94.2 4.7 45.1 1.1 57.1 2.1

Table 3.7: Comparison of B16 SSMs against different ensembles of solar ob-
servables.

B16-AGSS09met. We also read from the table the previously shown results
that that when using the linear opacity uncertainty parametrization the global
analysis yields a not too good p-value of 2.7σ for B16-GS98 and considerably
worse (4.7σ) for the B16-AGSS09met. However, as seen in the table the results
are different when the GP opacity uncertainty is used which yields p-value of
1.1σ and 2.1 σ for B16-GS98 and B16-AGSS09met, respectively.

In Fig. 3.3 we plot the fractional sound speed difference δc(r) ≡ (cobs(r)−
c(r))/c(r), where cobs(r) is the sound speed inferred from helioseismic data
while c(r) represent the sound speed profile predicted by the B16-GS98 (left)
and B16-AGSS09met (right) model, respectively. The blue (lighter) hatched
area and the red (darker) shaded area corresponds to the 1σ theoretical un-
certainties in sound speed predictions obtained for linear and GP opacity un-
certainty priors. As seen from the figure, and expected from the comparison
of the top panels in Fig. 3.2, they are not very different in the two considered
cases. Moreover, we observe from the figure that at almost all radii, inde-
pendently of the adopted prescription, the sound speed profile of B16-GS98
fits well within the 1σ data uncertainties. This, as previously described in
Sec. 3.1.3, may seem surprising that the B16-GS98 model is not providing a
good p-value in the case of linear opacity uncertainty parametrization.

The reason for the bad p-value obtained for the B16-GS98 model is that, as
discussed in Sec. 3.1.3 changes in input quantities do not lead to variations in
SSM sound speeds on very small radial scales, so values of the sound speed at
different radii in solar models are strongly correlated, i.e. the model correlation
matrix is highly non-diagonal. The new point here is that the characteristic
correlation length is very much dependent on the assumption for functional
form of the intrinsic opacity uncertainty. This is explicitly illustrated in the
lower panels of Fig. 3.3 where we graphically display the values for the entries of
the correlation matrix between the predicted sound speeds at the 30 locations
(the correlation matrix is the same for both B16 models). As seen in the figure,
the characteristic correlation length (i.e. the distance |ri − rj| over which
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correlations between the predicted values of the sound speeds are strong, say
|ρmod,ij| & 0.5) is much larger for the linear opacity profile parametrization
than for the GP profile.

The more flexible implementation of the opacity profile uncertainty pro-
vided by the GP procedure permits to obtain a better description of the obser-
vational data for both B16-GS98 and B16-AGSS09met models. To illustrate
this point, Fig. 3.4 shows the posterior distribution of L, the correlation length
hyperparameter (Eq. (3.28)). As seen from the figure, the best possible de-
scription of the data is achieved with correlation lengths of average 〈L〉 ∼ 0.2,
i.e. close to the lowest value permitted by the adopted prior that allows for
short scale modifications of the sound speed profiles.
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Figure 3.3: One σ range of variation of the fractional sound speed profiles as
predicted by the priors of the B16 SSM models for both opacity profile priors
discussed in the text (upper panels) compared with the 30 data points used in
the analysis. The lower panels graphically display the values of the entries in
the 30 × 30 model correlation matrix between the predicted sound speeds at
the 30 points (which are the same for B16-GS98 and B16-AGSS09met models)
for the linear opacity uncertainty parametrization (left) and the GP opacity
uncertainty(right).

We finish this section by giving in Table 3.8 the Bayes factors for the two
models as obtained with their posterior probability distributions after includ-
ing the neutrino and helioseismic data for the two assumed opacity profile
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B16-AGSS09met/B16-GS98
Data LIN-OP GP-OP
ν -0.23 -0.27
+YS+RCZ -1.6 -2.2
+ sound speeds -14.7 -4.1

Table 3.8: Bayes factor, ln(B), for the B16-AGSS09met vs B16-GS98 model
obtained with the different data sets (see table 2.2.1 for interpretation).

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

log
10

L

GS GP OP
AGS GP OP

Figure 3.4: Posterior probability distribution for the correlation length hyper-
parameter L of the GP opacity uncertainty for runs with the models B16-GS98
and B16-AGSS09met priors for the abundances.

uncertainties. As we discussed in Sec. 3.1.3 the B16-AGSS09met models are
always somewhat disfavoured with respect to the B16-GS98 model by all data
sets but the most statistical significant effect is driven by the sound speed
profile data. Here we now can see the dependence of these conclusion on the
assumed functional form of the opacity uncertainty. For the linear opacity un-
certainty profile the Bayes factor of -14.7 is enough for rejection of the model.
Allowing for the most flexible GP form of the opacity uncertainty decreases
the evidence against the B16-AGSS09met model to close to strong.

3.3 Neutrino and Helioseismic Data Driven SSM

We now turn to discuss an alternative approach to the abundance problem.
Our aim is to use the information from helioseismic and neutrino observations
to better determine the solar chemical composition and other solar properties.
The technical complication arises from the fact that both neutrino and he-
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lioseismic results are outputs of the Standard Solar Model simulations while
chemical composition and the other properties to be inferred are inputs. We
are faced then with a common issue in multivariable analysis, the consistent
estimation of the values of input parameters (some even with unknown func-
tional dependence) which can provide a valid set of outputs within a given
statistical level of agreement with some data. Before the advent of fast com-
puting facilities this could only be attempted by partially reducing the number
of inputs to be allowed to vary. For example, in Ref. [101] the problem was
analyzed in terms of three continuous multiplicative factors (the abundance
of volatiles, that of refractories and that of Ne) to parametrized the allowed
departures of the Standard Solar Model inputs from the adopted priors of the
two model versions.

In here what we are going to do instead is to make use of Bayesian inference
methods described in Sec. 2.2.1 to obtain the posterior probability distribu-
tion of the abundance and opacity input parameters which better describe
the data. Technically this is done by starting generating a composition un-
biased set of models by using a top hat prior for the logarithmic abundances
εi ≡ log10(Ni/NH) + 12 that accommodates both the AGSS09met and GS98
admixtures, i.e. with value 1 between the 3σ lower value of the AGSS09met
composition and the 3σ upper value of the GS998 composition for all the nine
elements relevant for solar model construction given in Table 3.9, and zero
outside this range. And we will generate the models for the two parametriza-
tions for the opacity uncertainty. For all other inputs we keep the gaussian
priors as in the generation of the B16 models.

In this section we show the results of the inferred composition and other
solar inputs in Sec. 3.3.1, the reconstructed solar opacity profile in Sec. 3.3.2
and the output solar neutrino fluxes in Sec. 3.3.3.

3.3.1 Inferred Composition

The results for the inferred composition are shown in Fig. 3.5 where we
plot the posterior probability distributions for the nine abundance parameters
centered for reference around the GS98 ones, i.e. ∆εj = εj−εj,GS98, and for the
two choices of priors of the opacity uncertainties (Linear or GP). The window
for each abundance corresponds to the allowed range, i.e. where prior=1.
Outside each window the value of the prior is zero. For the sake of comparison
we also show in the figure the corresponding prior distributions for the B16-
GS98 and B16-AGSS09met models. Notice that the distributions are given in
arbitrary units and have been normalized in such a way that the maximum of
all distributions lays at the same height to help comparison.

We list in the last two columns of Table 3.9 the corresponding ±1-σ ranges
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Figure 3.5: Posterior probability distribution for the logarithmic abundances
(εj − εj,GS98) from the analysis of neutrino and helioseismic data with uniform
priors for the abundances and for the two choices of the prior opacity uncer-
tainties. The distributions are given in arbitrary units and they have been
normalized in such a way that the maximum of all distributions lays at the
same height. See text for details.

for the logarithmic abundances εj extracted from these posterior distribution.
These can be compared with the determination of the same quantities in GS98
and AGSS09met compilations reported in the first two columns of the same
table. From the figure and table we see that the available data is not capable
of setting tight constraints on all the elements simultaneously. However we
find that the posterior for the combinations of CNO (C+N+O) and meteorite
(Mg+Si+S+Fe) abundances [83, 101] have a comparable precision to GS98
and AGSS09met observational determinations for either choice of the opac-
ity uncertainty parametrization. It is important to stress that, as mentioned
above, these posterior distributions are not obtained for arbitrary prior val-
ues, but allowing only abundance values contained in the range shown in each
window. But within this hypothesis the distributions for the abundances have
been obtained without assuming any prior correlation between the individual
elements. This is in contrast to previous work [83, 101], where abundances of
all elements within a group were forced to have the same proportional change.
Correlations among the posterior distributions of the abundances appear ex-
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Element GS98 AGSS09met Linear GP
C 8.52± 0.06 8.43± 0.05 [8.32, 8.56] [8.31, 8.51]
N 7.92± 0.06 7.83± 0.05 [7.88, 8.10] [7.81, 8.05]
O 8.83± 0.06 8.69± 0.05 [8.82, 8.91] [8.80, 8.94]
Ne 8.08± 0.06 7.93± 0.10 [7.87, 8.06] [7.90, 8.16]
Mg 7.58± 0.01 7.53± 0.01 [7.54, 7.60] [7.52, 7.58]
Si 7.56± 0.01 7.51± 0.01 [7.57, 7.59] [7.54, 7.59]
S 7.20± 0.06 7.15± 0.02 [7.35, 7.38] [7.27, 7.37]

Ar 6.40± 0.06 6.40± 0.13 [6.14, 6.44] [6.20, 6.50]
Fe 7.50± 0.01 7.45± 0.01 [7.42, 7.44] [7.42, 7.48]

CNO 9.04± 0.04 8.92± 0.03 [9.03, 9.08] [9.00, 9.09]
meteor. 8.09± 0.01 8.04± 0.01 [8.08, 8.10] [8.07, 8.10]

Table 3.9: 1-σ ranges for the logarithmic abundances εj. The first two columns
show the mean values and uncertainties of the GS98 and AGSS09met heavy
element admixtures. The last two columns give the ranges of the posterior
distributions from the analysis of neutrino and helioseismic data with uniform
abundance priors and for the two choices of the prior opacity uncertainties.

clusively as output of the data analysis. For the sake of illustration we provide
in Fig. 3.6 a graphic representation of the correlation among the posterior
probability distributions of the different element abundances. As expected,
the correlations are smaller for the run with the more flexible GP descrip-
tion of the opacity profile uncertainty. But in general for both GP and linear
opacity uncertainties, the correlation among the posterior distributions of the
abundances included either the CNO or the meteorite groups are not very
large. The exception is provided by the large anticorrelation between the pos-
terior distributions of C and O for the analysis with Linear opacity uncertainty.
We have verified that because the allowed ranges of C and O are strongly an-
ticorrelated in this case, the allowed range of CNO group abundance results
to be more precise than any of the model priors as seen in the lower central
panel in Fig. 3.5.

The posterior distributions for the other solar input parameters – luminos-
ity, diffusion, age, and the eight nuclear rates, are shown in Fig. 3.7 together
with their gaussian priors. From the figure we see that with the exception
of S11 and diffusion coefficients, all others parameters do not get significantly
modified with respect to the model priors by the inclusion of the neutrino and
helioseismic data, irrespective of the form of the opacity uncertainty. We have
verified that the sound speed data are the most relevant in driving the shift
in S11. This has to be interpreted as a variation in the effective rate of the
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Figure 3.6: Graphical representation of correlations between the posterior dis-
tributions of individual elemental abundances for the linear (left) and GP
(right) models of intrinsic opacity uncertainty.

proton-proton reaction, but it is not possible to ascribe this change specifically
to S11(0) or its derivatives. We see from the figure that the posterior distri-
butions for S11 show a preferred value about 1% lower than our prior central
value taken from Ref. [95] and 1.5% lower than the newer determination of
S11 by Ref. [97]. A reassessment of the p-p reaction cross section might be
therefore important.

The helioseismic data – the surface helium abundance YS and the location
of the bottom of the convective envelope RCZ – are instead responsible for
the preference of lower values of the diffusion coefficients. The reduction in
diffusion efficiency that we obtain is in line with previous work [83, 101], and it
might be related to the occurrence of macroscopic mixing below the convective
envelope [114, 115]. Our analysis points towards a 30±10% reduction, larger in
comparison with 12% found in Ref. [101] and closer to 21% found in Ref. [49].

3.3.2 Reconstructed Opacity Profile

We now turn to discuss the optimum profile for the opacity. The cor-
responding posterior distributions are shown in Fig. 3.8. In the upper left
panel, we plot the 1σ range of the intrinsic opacity change δκI(T ). This is
obtained from the posteriors of the parameters characterizing this function,
i.e. the parameters a and b for the linear opacity parametrization given by
Eq. (3.26), and the 11 values δκIi = δκI(Ti) that sample the function δκI(r)
(after marginalizing over the correlation length L) for GP. By construction,
the intrinsic opacity change δκI(T ) is defined with respect to a reference opac-
ity calculation κ(ρ, T, Y, Zi) that in our analysis include the atomic opacities
from OP [103] complemented at low temperatures by molecular opacities from
Ref. [104].
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Figure 3.7: Posterior probability distribution for other parameters from the
analysis of neutrino and helioseismic data with uniform priors for the abun-
dances and for the two choices of the prior opacity uncertainties. For compar-
ison we also show their prior distribution.

The fact that the posterior distribution of δκI(T ) is not centered at zero
with a non-trivial T dependence indicates that there are features of the obser-
vational data, namely the wiggle in the sound speed profile for 0.3 < r/R� <
0.6, that cannot be optimally fitted by using the reference opacities, even with
the freedom of varying the solar input parameters within their uncertainty
ranges and the solar composition in a large intervals considered in here, that
accommodate both AGSS09met and GS98 observational results.

As explained in Sec. 3.2.2, the quantity that is directly constrained by
observational data is the SSM opacity profile κSSM(T ), defined according to
Eq. (3.30), that is affected by composition modifications (and solar model re-
calibration) in addition to the effects of the intrinsic opacity change δκI(T ). In
the lower panels of Fig. 3.8, we show the posterior distributions for κSSM(T )
for the linear (left) and GP (right) description of opacity uncertainty. The
posterior distributions for κSSM(T ) are compared with the opacity profiles of
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Figure 3.8: Posterior distribution for the opacity profiles for the analysis with
uniform priors for the abundances and the two choices of priors of the opacity
uncertainties. See text for discussion.

B16-GS98 and B16-AGSS09met models. We see that they are almost coin-
cident with the the opacity profile of B16-GS98 model, as it is expected by
considering that the best fit CNO and meteoritic elemental abundances, that
drive the change in the opacity, are close to GS98 determinations. The optimal
opacity profile is well defined by observational data, as it is seen in the cen-
tral left (right) panels of Fig. 3.8 where we show the 1σ relative dispersion of
κSSM(r) with respect to its mean posterior value. The uncertainty for κSSM(r)
is somewhat larger for the GP opacity uncertainty description, ranging from
0.8% at the center to 4% at the base of the convective envelope, while for the
linear uncertainty parametrization it varies from 0.5% to 2.5%.

Finally, we note that the uncertainty in κSSM(r) is smaller than that of
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Figure 3.9: Top: 1σ ranges for the posteriors of the opacity profiles corre-
sponding to the six choice of priors for the composition and intrinsic uncer-
tainty variation used in this work. Central: Posterior distribution for the
opacity profiles for the analysis with uniform priors for the abundances and
the GP opacity uncertainty. The panel shows the mean and 1σ range of this
distribution combining both statistical and systematic uncertainties. Lower:
The panel shows its “statistical” 1σ uncertainty defined as the correspond-
ing variance of the posterior (shown also as “total” in the central right panel
in Fig. 3.8) and its “systematic” uncertainty defined defined as the standard
deviation of the six profiles shown on the top window.
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the intrinsic opacity change. In fact, δκI(r) is not directly constrained by
the observational properties of the Sun and its determination suffers from
the degeneracy with the composition opacity change δκZ(T ) that is quantified
by Eq. (3.34). For completeness, we report in the upper (right) panel of
Fig. 3.8, the 1σ range for the composition opacity change δκZ(r), obtained
from Eq. (3.33) with δzj being the variance of the posterior distributions of
the abundances in Fig. 3.5 defined relative to the mean of those posteriors.
Being defined with respect to the mean of the posterior, the corresponding
δκZ are centered around zero.

The result obtained with the uniform composition and with GP opacity
uncertainty prior represents our best estimate of the radiative opacity pro-
file in the solar interior. On the other hand, the profiles obtained with other
choices of priors, such us the uniform composition with linear opacity uncer-
tainty, or the four cases with B16-GS98 and B16-AGSSmet composition priors
with either choice of the opacity uncertainty prior presented in Sec. 3.2.3, can
serve as a measure of the systematic uncertainty in this estimate that reflects
dependence on the choice of priors. We show in the top panel in Fig. 3.9
the 1σ range of the posteriors for these six priors. From those we construct
a systematic uncertainty in the opacity, at each temperature, defined as the
standard deviation of the six reconstructed opacity profiles. The final opacity
profile with both error sources added in quadrature is shown in the central
panel in Fig. 3.9 and it ranges from 2% at the center to 7.5% at the bottom
of the convective zone.

3.3.3 Neutrino Fluxes

Finally, for completeness, we show the resulting posterior distribution for
the neutrino fluxes in Fig. 3.10. By construction they constitute the predicted
solar neutrino fluxes by models which better describe both the helioseismic
and neutrino data. We denote them as helioseismic and neutrino data driven
fluxes, B17-HNDD. We list in Table 3.10 their best values and 1σ uncertainties
and in Eq. (3.35) their correlations.

ρ =



1.00 0.80 0.03 -0.41 -0.02 -0.27 -0.27 0.12
0.80 1.00 0.06 -0.33 -0.05 -0.28 -0.29 0.01
0.03 0.06 1.00 -0.01 -0.01 -0.02 -0.02 0.01
-0.41 -0.33 -0.01 1.00 0.13 -0.03 -0.02 -0.03
-0.02 -0.05 -0.01 0.13 1.00 0.04 0.06 0.06
-0.27 -0.28 -0.02 -0.03 0.04 1.00 0.99 -0.14
-0.27 -0.29 -0.02 -0.02 0.06 0.99 1.00 -0.12
0.12 0.01 0.01 -0.03 0.06 -0.14 -0.12 1.00


(3.35)
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Figure 3.10: Posterior distributions for the neutrino fluxes for the analysis
with uniform priors for the abundances and the two choices of priors of the
opacity uncertainties. For the sake of comparison we show the corresponding
priors for the B16-GS98 and B16-AGSS09met models. The distributions are
given in arbitrary units and they have been normalized in such a way that the
maximum of all distributions lays at the same height. The fluxes are shown
normalized to the B16-GS98 prediction fi = φi/φ

B16−GS98
i .

As expected, we find that for those neutrino fluxes which are at present
most precisely determined in solar neutrino experiments, 8B and 7Be, the
B17-HNDD flux is very close to their experimental value used to construct
the neutrino data part of the likelihood function (see last column in table 3.4)
but with a smaller uncertainty because of the additional indirect constraints
imposed by the helioseismic data. Interestingly we find that with the inclusion
of the helioseismic data the precision of the predicted B17-HNDD CNO fluxes
is only at most a factor O(2) weaker than those of the B16-GS98 or B16-
AGSS09met composition models.
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B17-HNDD ν-Fluxes

Φ(pp) 6.017 (1+0.0033
−0.0041)

Φ(pep) 1.470 (1± 0.0061)

Φ(hep) 9.04 (1+0.22
−0.21)

Φ(7Be) 4.79 (1+0.027
−0.019)

Φ(8B) 5.10 (1± 0.018)

Φ(13N) 1.89 (1+0.32
−0.14)

Φ(15O) 1.50 (1+0.23
−0.20)

Φ(17F) 4.90 (1+0.22
−0.18)

Table 3.10: Posterior solar neutrino fluxes for uniform-GP models. Units are:
1010 (pp), 109 (7Be), 108 (pep, 13N, 15O), 106 (8B, 17 F) and 103(hep) cm−2s−1.

3.4 Summary

In this chapter we have presented our contribution on possible improve-
ments on the solar modeling which can lead to a better description of both
neutrino and helioseismic results. As a start we have introduced the latest
generation of solar models: B16-GS98 and B16-AGSS09met, the two variants
differing in the set of solar abundances (with either lower metallicity or higher
metallicity) used as inputs. They include recent updates on some important
nuclear reaction rates and a more consistent treatment of the equation of state.
They also include a novel and flexible treatment of the opacity uncertainties
based on opacity kernels. We present detailed comparisons of the high and
low metallicity models against different ensembles of solar observables includ-
ing solar neutrinos, surface helium abundance, depth of convective envelope
and sound speed profile. In particular, a global comparison including all ob-
servables yields a p-value of 2.7σ for the B16-GS98 model and 4.7σ for the
B16-AGSS09met. The poor agreement mainly lies in the inability for the
models to describe the sound speed data.

Motivated by this disagreement we have introduced a new non-parametric
modeling of the solar opacity called Gaussian process. This more flexible mod-
eling makes the preference of B16-GS98 model over B16-AGSS09 model less
marked. Next we have studied how to “build” models which could better de-
scribe the helioseismic and neutrino data. We have done so by using Bayesian
inference techniques. Starting from a composition unbiased set of SSMs we
have reconstructed the solar opacity profile and other inputs in a data driven
way. In this way we have estimated the total opacity uncertainty (data +
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priors) to be 7.5% at the base of the convective envelope and 1.8% at the solar
core. We have also determined the chemical composition and other solar in-
puts which better describe the helioseismic and neutrino observations. As an
output of the study we have derived the corresponding data driven predictions
for the solar neutrino fluxes.
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Chapter 4

Astrophysical Neutrinos and
Nonstandard Interactions

The detection of ultra-high energy neutrinos of astrophysical origin in Ice-
Cube [116–119] marks the onset of high energy neutrino astronomy. From
the point of view of astronomy, the main open question resides in finding the
sources of such neutrinos, an issue to which many suggestions have been con-
tributed (for a recent review see Ref. [120]). More on the astrophysical front,
one also questions what type of mechanisms are at work in those sources
to produce such high energy neutrino flux. To address this question the mea-
surement of the flavor composition of the observed neutrinos acquires a special
relevance.

Neutrino oscillations modify the flavor composition of the neutrino flux by
the time they reach the Earth. In the context of the well established frame-
work of 3ν oscillations these modifications are well understood and quantifi-
able given the present determination of the neutrino oscillation parameters.
Because of this, several studies to quantify the flavor composition of the Ice-
Cube events, even with the limited statistics data available, have been pre-
sented [121–128] but the results are still inconclusive.

It is well-known that new physics (NP) effects beyond 3ν oscillations in
the neutrino propagation can alter the predicted flavor composition of the
flux reaching the Earth, thus making the task of elucidating the production
mechanism even more challenging. Examples of NP considered in the literature
include Lorentz or CPT violation [129], neutrino decay [130, 131], quantum de-
coherence [132, 133] pseudo-Dirac neutrinos [134, 135], sterile neutrinos [136],
non-standard neutrino interactions with dark matter [137], or generic forms
of NP in the propagation from the source to the Earth parametrized by effec-
tive operators [138]. Besides modifications of the flavor ratios many of these
NP effects also induce a modification of the energy spectrum of the arriving

69



neutrinos.
In this chapter we consider an alternative form of NP, namely the possibility

of non-standard interactions (NSI) of the neutrinos in the Earth matter. Unlike
the kind of NP listed above, NSI in the Earth imply that neutrinos reach the
Earth surface in the expected flavor combinations provided by the “standard”
3ν vacuum oscillation mechanism: in other words, NSI in the Earth affect
only the flavor evolution of the neutrino ensemble from the entry point in
the Earth matter to the detector. The goal of this chapter is to quantify
the modification of the neutrino flavor composition at the detector because of
this effect within the presently allowed values of the NSI parameters. To this
aim we first briefly review in Sec. 4.1 the neutrino flavor composition at the
Earth considering only vacuum oscillations. After that, in Sec. 4.2 we illustrate
the formalism employed and in Sec. 4.2.1 derive the relevant flavor transition
probabilities from the source to the detector including the effect of NSI in
the Earth. We show that the resulting probabilities are energy independent
while they depend on the zenith angle arrival direction of the neutrinos, in
contrast with NP affecting propagation from the source to the Earth. We also
present the quantitative results, where in particular we highlight for which
source flavor composition the Earth-matter NSI can be most relevant. Next in
Sec. 4.2.2 we discuss the incoherent effects arising from the inelastic interaction
between neutrinos and the Earth matter in both quantitative and qualitative
ways. Finally we give a brief summary in Sec. 4.3. This chapter is based on
our work [139].

4.1 Flavor Composition of Astrophysical Neu-

trinos

Generically cosmic rays are assumed to be the main origin of ultra-high
energy neutrinos. They originate from the protons undergoing astrophysical
acceleration. Example of the astrophysical accelerators include active galactic
nuclei (AGN) [140] and gamma-ray bursts (GRBs) [141]. The high energy
protons can interact with ambient gas to produce not only the observed cosmic
rays but also neutrinos. The interactions are associated with the production of
pions and sometimes neutrons. As a result of their short lifetimes, π+ and π−

decay into muons and muon neutrinos with muons subsequently decaying into
leptons and neutrinos giving rise to the observed high-energy neutrinos. There
may also exist other more exotic sources of ultra-high energy neutrinos like
superheavy dark matter decay and topological defects (such as cosmic strings,
monopoles and hybrid defects) [142]. A detailed discussion of them is beyond
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the scope of this thesis.
The universe is not fully transparent to high energy comic rays. If their en-

ergies exceed the threshold of 5×1019 eV, comic rays quickly lose their energies
by interactions with the photons of the cosmic microwave background radiation
(CMB). This is called the Greisen-Zatsepin-Kuzmin (GZK) limit [143, 144].
Neutrinos on the contrary can reach the Earth basically undeflected and pro-
vide us with fundamental information on the source and production mechanism
of the cosmc rays.

The flavor composition of the neutrinos produced at the source depends on
the production mechanism. For example, for the pion-muon decay chain, which
is the most frequently considered, one expects φsµ = 2φse while φsτ = 0 [145]
(denoting by φsα the neutrino flux of flavor να at source). Alternatively, if some
of the muons lose energy very rapidly one would predict a single µ-flavor flux
while φse = φsτ = 0 [146–150]. If neutrino production is dominated by neutron
decay one expects also a single flavor flux but of electron neutrinos [147] so in
this case φsµ = φsτ = 0. Decay of charm mesons contributes a flux with equal
amounts of electron and muon neutrinos, φse = φsµ and φsτ = 0. If several of
the above processes in the source compete, arbitrary flavor compositions of φse
and φsµ are possible but still with φτ = 0 [149]. If, in addition, ντ are also
produced in the source [151–153], then generically φsα 6= 0 for α = e, µ, τ .

Next we need to quantify how the flavour composition is modified by os-
cillations. Our starting point is the initial neutrino (antineutrino) fluxes at
the production point in the source which we denote as φsα (φ̄sα) for α = e, ν, τ .
The corresponding fluxes of a given flavor at the Earth’s surface are denoted
as φ⊕α (φ̄⊕α ) while the fluxes arriving at the detector after traversing the Earth
are φdα (φ̄dα). They are generically given by

φ⊕β (E) =
∑
α

∫
dE ′Ps→⊕αβ (E,E ′)φsα(E ′) , φdβ(E) =

∑
α

∫
dE ′Ps→dαβ (E,E ′)φsα(E ′)

(4.1)
and correspondingly for antineutrinos. P is the flavor transition probability
including both coherent and incoherent effects in the neutrino propagation.

Let us start by considering first only the coherent evolution of the neutrino
ensemble. In this case, the flavor transition probabilities from the source (s)
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to the Earth entry point (⊕) and to the detector (d) can be written as

Ps→⊕αβ (E,E ′) = P s→⊕
αβ (E) δ(E − E ′) , withP s→⊕

αβ (E) =
∣∣As→⊕αβ (E)

∣∣2 , (4.2)

Ps→dαβ (E,E ′) = P s→d
αβ (E) δ(E − E ′) , withP s→d

αβ (E) =

∣∣∣∣∣∑
γ

As→⊕αγ A⊕→dγβ

∣∣∣∣∣
2

,

(4.3)

In the case where astrophysical neutrinos experience vacuum oscillation only,
the flavor transition probabilities from a source at distance L are

P s→⊕
αβ (E) =

∑
ij

UβiU
∗
βjUαjU

∗
αi exp(−i

∆m2
ij

2E
L) , (4.4)

where U is the leptonic mixing matrix. Eq. (4.4) is nothing but a compact form
of Eq. (2.15). Since for astrophysical neutrinos the propagation distance L is
much longer than the oscillation wavelength, we can average out the vacuum
oscillation terms:

P s→⊕
αβ (E) =

∑
i

|Uαi|2|Uβi|2 . (4.5)

Flavor composition of the astrophysical neutrinos are usually parametrized in
terms of the flavor ratios at the source and at the Earth surface, defined as:

ξsα ≡
φsα(E)∑
γ φ

s
γ(E)

, ξ⊕β ≡
φ⊕β (E)∑
γ φ
⊕
γ (E)

=
∑
α

P s→⊕
αβ (E)ξsα (4.6)

and it has become customary to plot them in ternary plots.
The present determination of the leptonic mixing matrix from the mea-

surements of neutrino oscillation experiments allows us to determine the as-
trophysical neutrino flavor content at detection given an assumption of the
neutrino production mechanism. For completeness and reference we show in
Fig. 4.1 the allowed regions of the flavor ratios at the Earth as obtained from
the projection of the six oscillation parameter χ2 function of the global Nu-
FIT analysis of oscillation data [3, 68] in the relevant mixing combinations (see
also [122, 138, 154]). We stress that in our plots the correlations among the
allowed ranges of the oscillation parameters in the full six-parameter space are
properly taken into account. The results are shown after marginalization over
the neutrino mass ordering and for different assumptions of the flavor con-
tent at the source as labeled in the figure. Fig. 4.1 illustrates the well-known
fact [145] that during propagation from the source neutrino oscillations lead
to flavor content at the Earth close to (ξ⊕e : ξ⊕µ : ξ⊕τ ) = (1

3
: 1

3
: 1

3
), with largest
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Figure 4.1: Two-dimensional projections of the allowed regions from the global
analysis of oscillation data from Ref. [3] in the relevant combinations giving
the flavor content at the Earth. The allowed regions are shown at 90%, 95%
and 3σ CL. In the upper panels we show the regions for four initial flavor
compositions (ξse : ξsµ : ξsτ ) = (1

3
: 2

3
: 0), (1 : 0 : 0), (0 : 1 : 0), and (1

2
: 1

2
: 0).

In the lower panel the regions are shown for the more general scenarios, (ξse :
ξsµ : ξsτ ) = (x : 1 − x : 0) for 0 ≤ x ≤ 1, and (ξse : ξsµ : ξsτ ) = (x : y : 1 − x − y)
for 0 ≤ x, y ≤ 1.

deviations for the case when the flavor content at the source is (1 : 0 : 0) [155]
and (0 : 1 : 0).

4.2 Effect of NSI on the Flavor Composition

The standard theoretical framework for the NP considered here is provided
by non-standard interactions affecting neutrino interactions in the Earth mat-
ter. They can be described by effective four-fermion operators of the form

LNSI = −2
√

2GF ε
fP
αβ (ν̄αγ

µLνβ)(f̄γµPf) , (4.7)

where f is a charged fermion, P = (L,R) and εfPαβ are dimensionless parameters
encoding the deviation from standard interactions. In here we only consider
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neutral current neutrino interactions since charged current interactions are
subject to strong constraints from charged lepton processes. So Eq. (4.7) is a
four-fermion interaction similar to the effective low energy limit of the standard
electroweak interactions but where we have now introduced the possibility of
lepton flavour and universality violation in the interactions.

For astrophysical neutrinos NSI can affect the flavour ratio at the detector
via the coherent scattering of the neutrinos when crossing the Earth as well
as via non-coherent interactions with the Earth matter as we describe next.

4.2.1 Modified Matter Potential

Coherent neutrino scattering involves only the vector part of the four
fermion interactions. In the Standard Model this leads to the appearance
of an effective potential difference for νe’s when traversing matter as described
in Sec. 2.1.3. In the presence of NSI we will have to introduce a non-standard
matter potential [156]

VNSI =
√

2GF

∑
f=e,u,d

Nf (r)

εfee εfeµ εfeτ
εf∗eµ εfµµ εfµτ
εf∗eτ εf∗µτ εfττ

 . (4.8)

in addition to the standard matter potential in Eq. (2.17). The non-standard
interactions with fermion f are accounted by the εfαβ coefficients with εfαβ =

εfLαβ + εfRαβ . Here Nf (r) is the number density of fermions f in the Earth
matter. In practice, the PREM model [157] fixes the neutron/electron ratio
to Yn = 1.012 in the Mantle and Yn = 1.137 in the Core, with an average
Yn = 1.051 all over the Earth. Thus we get an average up-quark/electron
ratio Yu = 3.051 and down-quark/electron ratio Yd = 3.102. We can therefore
define:

εαβ ≡
∑

f=e,u,d

〈
Yf
Ye

〉
εfαβ = εeαβ + Yu ε

u
αβ + Yd ε

d
αβ (4.9)

so that the non-standard matter potential can be written as:

VNSI =
√

2GFNe(r)

εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ

 . (4.10)

Generically the flavor transition amplitudes in Eq. (4.2) are obtained by solving
the neutrino and antineutrino evolution equations for the flavor wave function
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ν(x) = {νe(x), νµ(x), ντ (x)}T

i
dν(x)

dx
= Hs→⊕

ν ν(x) , i
dν̄(x)

dx
= Hs→⊕

ν̄ ν̄(x) (4.11)

for evolution between the source and the Earth surface and

i
dν(x)

dx
= H⊕→dν ν(x) , i

dν̄(x)

dx
= H⊕→dν̄ ν̄(x) , (4.12)

for evolution in the Earth matter. They are in a similar form as Eq. (2.19)
but now we are dealing with three neutrino flavors.

In here we are interested in standard vacuum oscillation dominating the
propagation from the source to the detector but allowing for new physics in
the interactions of the neutrinos in the Earth matter. In this case

Hs→⊕
ν = (Hs→⊕

ν̄ )∗ = Hosc = UDvacU
† with Dvac =

1

2E
diag(0,∆m2

21,∆m
2
31) .

(4.13)
While

H⊕→dν ' Hmat , H⊕→dν̄ ' −H∗mat (4.14)

where the ' corresponds to neglecting vacuum oscillations inside the Earth
which is a very good approximation for the relevant neutrino energies (& 1
TeV).

As discussed above NSI introduce additional non-standard matter poten-
tial. So the matter Hamiltonian can be written as the sum of Eq. (4.10) and
Eq. (2.17), i.e.

Hmat =
√

2GFNe(r)

1 + εee εeµ εeτ
ε∗eµ εµµ εµτ
ε∗eτ ε∗µτ εττ

 ≡ WDmatW
† (4.15)

where
Dmat =

√
2GFNe(r) diag(ε1, ε2, ε3). (4.16)

where W is a 3 × 3 unitary matrix containing six physical parameters, three
real angles and three complex phases. So without loss of generality the matter
potential contains eight parameters, five real and three phases (as only dif-
ference of εi enter the flavor transition probabilities, only differences in the
εαα are physically relevant for neutrino oscillation data). The standard model
interactions are encoded in the first term of ee entry (i.e. the 1 in 1 + εee) in
Eq. (4.15).

Altogether the flavor transition probabilities from a source at distance L
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are

P s→d
αβ (E) =

∑
γηkl

WβkW
∗
βlWγlW

∗
ηk exp(−ide∆εkl)

∑
ij

UηiU
∗
γjUαjU

∗
αi exp(−i

∆m2
ij

2E
L) ,

(4.17)

P s→⊕
αβ (E) =

∑
ij

UβiU
∗
βjUαjU

∗
αi exp(−i

∆m2
ij

2E
L) (4.18)

where ∆εkl = εk− εl. Again we can average out the vacuum oscillation terms:

P s→d
αβ (E) =

∑
i

|Uαi|2|Uβi|2 − 2
∑
γηkli

Re
(
WβkW

∗
βlWγlW

∗
ηkUηiU

∗
γi|Uαi|2

)
sin2(de

∆εkl
2

)

+
∑
γηkli

Im
(
WβkW

∗
βlWγlW

∗
ηkUηiU

∗
γi|Uαi|2

)
sin(de∆εkl) ,

(4.19)

P s→⊕
αβ (E) =

∑
i

|Uαi|2|Uβi|2 . (4.20)

In these expressions we have introduced the dimensionless normalization for
the matter potential integral along the neutrino trajectory in the Earth

de(Θz) ≡
∫ 2R cos(π−Θz)

0

√
2GFNe(r)dx , with r =

√
R2
⊕ + x2 + 2R⊕x cos Θz ,

(4.21)
which we plot in Fig. 4.2. The integral includes both the effect of the increase
length of the path in the Earth and the increase average density which is
particular relevant for trajectories crossing the core and leads to the higher
slope of the curve for cos Θz . −0.84.

We have now rederived Eq. (4.5) as Eq. (4.20), but with a more general
formalism. We notice that the total coherent flavor transition probability
remains energy independent even in the presence of NSI. Also the last term
in Eq. (4.19) does not change sign for antineutrinos since both the imaginary
part of the combination of mixing matrices and the phase of the oscillating
sin change sign for antineutrinos.1 In other words, there is no CP violation
even if all the phases in U and W are kept different from zero. These two
facts render the flavor composition of the fluxes at the detector independent
of the energy spectrum and the neutrino/antineutrino ratio at the source, as

1Indeed this term preserves CP but violates time reversal, as it is well known that Earth
matter effects violate CPT.
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Figure 4.2: The normalized density integral de along the neutrino path as a
function of the neutrino arrival zenith angle.

long as the flavor composition at the source is the same for both neutrinos
and antineutrinos. This is just as the case for standard 3ν oscillations in the
absence of NP.2

In brief, the effect of NSI in the Earth is to modify the flavor composition
at the detector as compared to the standard case, in a way which depends on
the zenith angle of the arrival direction of the neutrinos. Also, as expected, the
effect only appears in presence of additional flavor mixing during propagation
in the Earth, i.e., for Wαi 6= Cδαi, which occurs only if some off-diagonal εαβ
(with α 6= β) is different from zero.

In what follows we will present our results in terms of flavor ratios at the
detector ξdβ, since, as we will demonstrate in the next section when discussing
incoherent effects, they are good estimators of the reconstructed quantities
ξ⊕,rec
β usually shown by the experimental collaborations. It is easy to show

that:
ξdβ =

∑
α

P s→d
αβ (E)ξsα (4.22)

where P s→d
αβ (E) is obtained from Eq. (4.19). In principle, one may expect that

the flavor ratios ξdβ would depend on the neutrino energy, either through the

oscillation probability P s→d
αβ (E) or though the intrinsic energy dependence of

the flavor ratios at the source ξsα. However, as we have seen in the previous
discussion the expression in Eq. (4.19) is independent of E, and moreover we
will assume (as it is customary to do) that the ratios ξsα do not depend on
the neutrino energy even though the fluxes φsα(E) do. Hence, the flavor ratios
ξdβ are independent of energy and they can still be conveniently plotted in a
ternary plot even in the presence of NSI.

2Relaxing the assumption of equal flavor composition for neutrinos and antineutrinos at
the source can lead to additional interesting effects even in the case of standard oscillations
as discussed in Ref. [154, 158].
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Figure 4.3: Flavor ratios at the detector as a function of the zenith angle
of the neutrino normalized to the expectation in the absence of NSI and for
oscillation parameters at the best fit of the global analysis (sin2 θ12 = 0.305,
sin2 θ13 = 0.0219, sin2 θ23 = 0.579, and δCP = 254◦). For the left (central)
[right] panels the only non-vanishing NSI parameters are εeµ = 0.04 (εeτ =
−0.05) [εeµ = εeτ = −0.04]. The different curves corresponds to different
flavor composition at the source: (ξse : ξsµ : ξsτ ) = (1 : 0 : 0) (full black),
(0 : 1 : 0) (dashed red), (1

2
: 1

2
: 0) (dotted blue), and (1

3
: 2

3
: 0) (dash-dotted

purple).

As discussed in the previous section NSI in the Earth modify these pre-
dictions and, unlike for NP effects in the propagation from the source, such
Earth-induced modifications are a function of the arrival zenith angle of the
neutrino. As illustration we show in Fig. 4.3 the variation of the flavor ra-
tios at the detector as a function of the zenith angle of the neutrino for some
values of the εαβ well within the presently allowed 90% CL ranges. In our
convention cos Θz = −1 corresponds to vertically upcoming neutrinos (which
have crossed the whole Earth before reaching the detector) while cos Θz = 0
corresponds to horizontally arriving neutrinos (for which effectively no Earth
matter is crossed so that ξdβ(cos Θz = 0) = ξ⊕β ). From Fig. 4.3 we can observe
the main characteristics of the effect of NSI in the Earth matter. Deviations
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Figure 4.4: Allowed regions for the flavor ratios in the presence of NSI in the
Earth at 90, 95% and 3σ CL for an initial flavor (ξse : ξsµ : ξsτ ) = (1 : 0 : 0). The
four triangles correspond to averaging over neutrinos arriving with directions
given in the range 0 ≥ cos Θz > −0.25 (upper left), −0.25 ≥ cos Θz > −0.5
(upper right) −0.5 ≥ cos Θz > −0.75 (lower left), and −0.75 ≥ cos Θz ≥ −1
(lower right).

are sizable for flavor α as long as εβ 6=α is non-zero and ξsα or ξsβ are non-zero.
Larger effects are expected for source flavor compositions for which vacuum
oscillations from the source to the Earth lead to “less equal” ratios at the
Earth surface: (1 : 0 : 0) and (0 : 1 : 0). Finally the increase in frequency
for almost vertical neutrino direction is a consequence of the increase of the
integral density de for core crossing trajectories (see Fig. 4.2).

Next we show how the allowed regions in the ternary plots shown in Fig. 4.1
are modified when including the effect of the NSI presently allowed at given
CL. In order to do so we project the χ2 of the global analysis of oscillation
data in the presence of arbitrary NSI on the relevant combinations entering in
the flavor ratios within a given CL. The results are shown in Fig. 4.4, Fig. 4.5
and Fig. 4.6 for the flavor compositions at source (ξse : ξsµ : ξsτ ) = (1 : 0 : 0),
(0 : 1 : 0) and (1

3
: 2

3
: 0), respectively. The results are shown averaged over

four zenith angular directions.
Comparing the allowed regions in Fig. 4.4 and Fig. 4.5 with the corre-

sponding ones for (1 : 0 : 0) and (0 : 1 : 0) compositions in the case of
standard 3ν oscillations given in Fig. 4.1 we see that the flavor ratios can take
now much wider range of values in any of the zenith angle ranges considered.
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Figure 4.5: Same as Fig. 4.4 for (ξse : ξsµ : ξsτ ) = (0 : 1 : 0).

Moreover, although sizable deviations from (ξde : ξdµ : ξdτ ) = (1
3

: 1
3

: 1
3
) are

possible, the allowed regions now extend to include (1
3

: 1
3

: 1
3
) at CL of 3σ

or lower. We also see that the larger CL region becomes smaller for most
vertical arrival directions (see the relative size of the light blue regions in the
two lower triangles on these figures). This is so because at those CL for the
larger values of ε allowed the NSI-induced oscillations are fast enough to be
averaged out 〈sin2(∆εij

de
2

)〉 ∼ 1
2

for those trajectories while the value in the
second most vertical angular bin can be in average larger than 1/2. For con-
trast, as illustrated in Fig. 4.6, for the case of flavor composition at the source
(ξse : ξsµ : ξsτ ) = (1

3
: 2

3
: 0) NSI in the Earth never induce sizable modifications

of the expectation (ξde : ξdµ : ξdτ ) = (1
3

: 1
3

: 1
3
).

4.2.2 Incoherent Effects

In addition to the coherent effects discussed so far, high-energy neutrinos
propagating through the Earth can also interact inelastically with the Earth
matter either by charged current or by neutral current interactions. In charged
current interactions leptons are generated at a price of the loss of incoming
neutrinos. Among these leptons, electrons are stable and can be absorbed into
the Earth matter. Muons may radiate away energy through various reactions
before decaying back to neutrinos. Taus, on the other hand, regenerate tau
neutrinos with electron or muon neutrinos from decay because of their short
lifetime. As a consequence of these inelastic processes the neutrino flux is at-
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Figure 4.6: Same as Fig. 4.4 for (ξse : ξsµ : ξsτ ) = (1
3

: 2
3

: 0).

tenuated, its energy is degraded, and secondary fluxes are generated in charged
current interactions.

The most convenient way to describe neutrino flavor oscillation in the pres-
ence of the incoherent effects is the density matrix formalism which evolves
the neutrino ensemble in terms of density matrix ρ. A careful treatment of
the attenuation, regeneration and energy degradation of the high energy neu-
trino fluxes with the density matrix formalism can be found in Ref. [159] (see
also Ref. [160]) where the evolution of neutrino fluxes is described by a set
of integro-differential equations. Here instead we use the software package
nuSQuIDS [161] with the integro-differential equations built in. Given the
neutrino fluxes at the source and the physics during propagation, nuSQuIDS
will output the neutrino fluxes at the detector. The nuSQuIDS code is then
modified to be adapted to the new physics which we have introduced. With
this tool at hand, we show the flavor ratios at the detector including incoher-
ent effects in Fig. 4.7. This figure is not very different from Fig. 4.3 except
that incoherent effects are included for the colored curves. Different curves
correspond to different neutrino flux energies at the source. We only show the
results for the case of the flavor composition (ξse : ξsµ : ξsτ ) = (1 : 0 : 0) at the
source but the results for other flavor compositions are not very different. For
comparison we also plot the detected flavor composition without incoherent
effects as the black curve. The colored curves cluster together and it is hard
to distinguish one from another. This means the dependence of incoherent
effects on neutrino energy is only moderate. Though there is some difference
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between the colored and black curves, we don’t observe drastic change when
including incoherent effects. Thus we conclude our coherent scattering is still
good approximation for the detected flavor composition.
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Figure 4.7: Same as Fig. 4.3 but including incoherent effects for the colored
curves. Only the flavor composition of (1 : 0 : 0) at the source is shown in
the figure. The full black curve is the same as the full black curve in Fig. 4.3.
The dashed red, dotted blue and dash-dotted purple corresponds to neutrino
fluxes with energy 104 GeV, 106 GeV and 108 GeV respectively. These three
curves show the flavor ratios at the detector when considering both NSI and
incoherent effects.

This conclusion can also be understood qualitatively. For simplicity, let
us first neglect NSI and focus only on the usual 3ν oscillation framework. In
the standard scenario, attenuation and regeneration effects can be consistently
described by a set of coupled partial integro-differential equations. In this case
the fluxes at the arrival point in the Earth are given by Eq. (4.1) and (4.2)
while for the fluxes at the detector we have:

SM: Ps→dαβ (E,E ′) =
∑
γ

P s→⊕
αγ (E)F⊕→dγβ (E,E ′) , (4.23)

where F⊕→dγβ (E,E ′) is the function accounting for attenuation and regeneration
effects, which depends on the trajectory of the neutrino in the Earth matter
(i.e., it depends on Θz). Attenuation is the dominant effect and for most
energies is only mildly flavor dependent. So the dominant incoherent effects
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verify
SM: F⊕→dγβ (E,E ′) ' δγβF

⊕→d
att (E)δ(E − E ′) . (4.24)

When considering NSI in the Earth the simple factorization of coherent and
incoherent effects introduced in Eq. (4.23) does not hold, since NSI-induced
oscillations, attenuation, and regeneration occur simultaneously while the neu-
trino beam is traveling across the Earth’s matter. In order to properly account
for all these effects we need to replace the evolution equation in the Earth (4.12)
with a more general expression including also the incoherent components. This
can be done by means of the density matrix formalism and we have already
shown the quantitative results in Fig. 4.7. However, if one neglects the sub-
leading flavor dependence of these effects and focus only on the dominant
attenuation term, as we did in Eq. (4.24) for the standard case, it becomes
possible to write even in the presence of NSI-oscillations:

NSI: Ps→dαβ (E,E ′) ' P s→d
αβ (E)F⊕→datt (E)δ(E − E ′) (4.25)

with P s→d
αβ (E) given in Eq. (4.19). In other words, although the presence

of NSI affects the flavor composition at the detector through a modification
of the coherent part of the evolution in the Earth, the incoherent part is
practically the same in both the standard and the non-standard case and does
not introduce relevant flavor distortions.

Experimentally ξ⊕β are reconstructed from the measured neutrino fluxes in

the detector φdα by deconvoluting the incoherent effects due to SM interactions
in the Earth matter:

ξ⊕,rec
β ≡

φ⊕,rec
β (E)∑
γ φ
⊕,rec
γ (E)

with φ⊕,rec
β (E) ≡

∑
γ

∫
dE ′G⊕←dγβ (E,E ′)φdγ(E

′)

(4.26)
where the function G⊕←dαβ (E,E ′) is the inverse of the Earth attenuation +

degradation + regeneration function F⊕→dαβ (E,E ′) introduced before:

∑
γ

∫
dE ′′F⊕→dγβ (E,E ′′)G⊕←dαγ (E ′′, E ′) = δαβ δ(E − E ′) (4.27)

Under the approximation described in Eq. (4.24) G⊕←dαβ (E,E ′) reduces to:

G⊕←dαβ (E,E ′) ' δαβ
1

F⊕→datt (E)
δ(E − E ′) (4.28)
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so that

ξ⊕,rec
β '

φdβ(E)
/
F⊕→datt (E)∑

γ φ
d
γ(E)

/
F⊕→datt (E)

=
φdβ(E)∑
γ φ

d
γ(E)

≡ ξdβ (4.29)

where we have introduced the flavor ratios at the detector ξdβ. Thus we have

shown that the reconstructed flavor ratios at the surface of the Earth (ξ⊕,rec
β )

are well approximated by the measured flavor ratios at the detector (ξdβ). This
conclusion depends only on the validity of the approximation (4.24), and there-
fore applies both for standard oscillations and in the presence of new physics
such as Earth NSI. The qualitative discussion of incoherent effects here is con-
sistent with the quantitative results shown in Fig. 4.7, i.e. incoherent effects
don’t modify the flavor ratios at the detector in an essential way.

4.3 Summary

The measurement of the flavor composition of the detected ultra-high en-
ergy neutrinos can be a powerful tool to learn about the mechanisms at work
in their sources. Such inference, however, relies on the understanding of the
particle physics processes relevant to the neutrino propagation from the source
to the detector. The presence of NP effects beyond those of the well established
mass-induced 3ν oscillations alters the flavor composition at the detector and
can therefore affect the conclusions on the dominant production mechanism.

In this work we have focused on NP effects associated with NSI of the
neutrinos in the Earth matter. The relevant flavor transition probabilities ac-
counting for oscillations from the source to the Earth plus NSI in the Earth
are energy independent but depend on the zenith angle of the arrival direction
of the neutrinos, which is a characteristic feature of this form of NP. Quanti-
tatively, we have shown that within the presently allowed range of NSI large
deviations from the standard 3ν oscillation predictions for the detected flavor
composition can be expected, in particular for fluxes dominated by one flavor
at the source. On the contrary we find that the expectation of equalized flavors
in the Earth for sources dominated by production via pion-muon decay-chain
is robust even in the presence of this form of NP. Our results are based on
coherent forward scattering but show robustness when including incoherent
effects.
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Chapter 5

Cosmological Neutrinos and
New Interactions

Besides in astrophysical sources, neutrinos were also produced in the early
universe. For a good part of its history these cosmological neutrinos are main-
tained in equilibrium with the primordial plasma through electroweak inter-
actions. As the universe cools down, their interactions become less efficient.
Eventually when neutrinos are not able to maintain equilibrium they decouple
from the plasma. Furthermore if the masses of neutrinos are larger than the
neutrino temperature of about 1.9 K (or equivalently 1.7×10−4 eV), they must
experience a transition from being relativistic to being non-relativistic some-
time along the history of the universe. The thermalization between neutrinos
and the plasma in the early universe predicts a number density of about 113
relic neutrinos per cm3 today, making them the second most abundant species
in the universe, right after photons. These relic neutrinos make up what is
referred to as the cosmic neutrino background.

As an important component in cosmology, both the contribution of neu-
trinos to the total energy density and their effect on its perturbations leave
imprints on the the evolution of the universe. Consequently current cosmolog-
ical observations put important constraints on the properties of neutrinos.

Additional light neutrinos have been invoked to explain some anomalies
in the short baseline oscillation experiments. Cosmological data however sets
very tight constraints on the parameter space for additional neutrino species
which results into severe tensions with those required to explain the short
baseline oscillation anomalies. In this chapter, we will study the possibility of
relieving the tension between eV sterile neutrinos and cosmological observa-
tions by introducing new interactions in the sterile sector.

85



5.1 A Neutrinoless Universe

To study the role of neutrinos in cosmology, we first present a brief review
of the evolution history of the universe. For illustration purpose we don’t in-
clude neutrinos here but rather restore them in the next section. We start
with a homogeneous and isotropic universe in Sec. 5.1.1 and describe the per-
turbations on this background universe Sec. 5.1.2. This section is based on
Refs. [162–164].

5.1.1 The Expanding Universe

You may have looked up at the clear night sky when you were a child
and found that there are countless stars shinning above your head. Someone
standing beside you may tell you the names of the constellations one by one.
If at that time you are asked the question whether the universe is the same
when comparing any two directions, you may answer no without hesitation.
But wait! Think twice before you answer. If we average over scales way larger
than galaxy clusters, any two directions become similar. This is even better
illustrated by the comic microwave background (CMB) data, which shows that
the spectrum of relic photons produced in the early universe is that of a black
body with temperature of T = 2.7255K in all directions. The temperature
fluctuations of the CMB over that black body spectrum are of 1 part of 105,
regardless of the direction where the photons come from. This indicates that
the universe is isotropic, i.e., there is no preferred direction in the universe.
Furthermore, it is hard to believe that we are at the center of the universe,
so if the universe is isotropic everywhere, it is also homogeneous, i.e., there is
no special point. Still, you see one constellation different from another, and
this lies in the more profound idea of inhomogeneity and anisotropy. We shall
treat them as perturbations over a homogeneous and isotropic background.

The universe is also expanding. We know this because the stars outside
the Milky Way are receding away from us. We introduce the scale factor
a(t) to trace the expansion of the universe. The expanding, homogeneous
and isotropic universe can be described by the Friedmann-Robertson-Walker
(FRW) metric where the spacetime interval can be written as

ds2 = dt2 − a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
(5.1)

in polar coordinates. K is the curvature of the universe, and positive, zero, and
negative curvatures correspond to a closed, flat and open universe respectively.
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In Cartesian coordinates the spacetime interval is instead

ds2 = dt2 − a2(t)γijdx
idxj = gµνdx

µdxν , (5.2)

where
γij = δij +K

xixj
1−Kx2

, (5.3)

and the sum over µ and ν from 0 to 3 is implicit following Einstein’s convention.
i and j from 1 to 3 are indices of spacial coordinates only. In general, the metric
gµν in Eq. (5.2) characterizes the geometry of spacetime. Using this notation
one can immediately find

g00 = 1, g0i = gi0 = 0, and gij = a2γij . (5.4)

The coordinates xi are the comoving coordinates, which means they are mea-
sured by the comoving observer who follows the expansion of the universe.
Similarly the comoving distance is the distance as measured by the comoving
observer. It is also convenient to introduce the conformal time

dτ = dt/a(t) (5.5)

which is the comoving distance that light (c = 1 here) can travel in a time
interval dt. To measure how fast the universe expands, we define the Hubble
parameter as

H(t) ≡ 1

a

da

dt
=
ȧ

a
, (5.6)

(not to be confused with the Hamiltonian which we have used in the previous
chapters). The Hubble parameter today is usually denoted by H0, which is
sometimes called Hubble constant ( certainly the Hubble parameter may not
be a constant as the universe expands). It is often useful to define another
expansion parameter in terms of the derivative with respect to the conformal
time, which is

H ≡ 1

a

da

dτ
=
a′

a
. (5.7)

To avoid confusion throughout this chapter we use an overdot to denote the
derivative with respect to time and a prime to denote the derivative with con-
formal time. Using Eq. (5.5) we are able to relate H and H as H = aH.

Conservation of Energy Momentum

The universe consists of matter (e.g. dark matter and baryons), radiation
(e.g. photons and relativistic neutrinos) and dark energy. The homogeneity
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and isotropy require the components to be described by a perfect fluid, i.e.,
their energy-momentum tensor has the form

Tµν = (ρ+ P )UµUν − Pgµν , (5.8)

where ρ and P are the energy density and pressure of the fluid and the four
velocity is defined as

Uµ ≡
dxµ
ds

. (5.9)

We will show later that our universe today is quite flat, so let’s just “keep it
flat” for the moment. In the rest frame of the fluid, Uµ = (1, 0, 0, 0), and we
see from Eq (5.8)

Tµν =


ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 . (5.10)

In general relativity, the partial derivative ∂µ is promoted to the covariant
derivative ∇µ. When acting on a vector V ν ,

∇µV
ν = ∂µV

ν + ΓνµλV
λ , (5.11)

where the Christoffel symbols

Γµαβ =
1

2
gµλ(∂αgβλ + ∂βgαλ − ∂λgαβ) . (5.12)

With the covariant derivative we can write the conservation of energy-momentum
in general relativity as

∇µT
µ
ν = ∂µT

µ
ν + ΓµµλT

λ
ν − ΓλµνT

µ
λ = 0 . (5.13)

where
T µν = gµρTρν = (ρ+ P )UµUν − Pδµν . (5.14)

It is important to note that energy-momentum conservation holds for each
component that doesn’t interact with other components in the universe since
there is no energy-momentum transfer. For example, the energy-momentum of
dark matter is conserved separately. Introducing Eqs. (5.4), (5.12) and (5.10)
in Eq. (5.13) and evaluating the ν = 0 component, we find

ρ′ + 3H(ρ+ P ) = 0 . (5.15)

This is the continuity equation in general relativity which describes the evo-
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lution of the energy density. In general, the energy density and pressure of
a fluid are related by the equation of state P = wρ so the evolution will be
different for components characterized by different values of w:

• Matter. The pressure of dark matter and baryons is so small that we can
approximate it by w = 0. Eq. (5.15) thus yields

ρm ∝ a−3 . (5.16)

This simply says that the matter density is diluted by the expansion of
the universe in all three spatial dimensions.

• Radiation. For radiations w = 1/3 holds. Eq. (5.15) gives

ρr ∝ a−4 . (5.17)

Thus in an expanding universe, radiation cools down faster than matter
does.

• Dark energy. The source of dark energy still remains mysterious. One
possible candidate is the vacuum energy in quantum field theory. In
many cases the energy density and pressure has the relation P = −ρ.
Given this relation

ρΛ = const . (5.18)

Einstein Equation

The evolution of the metric is determined by the Einstein equation

Gµν = Rµν −
1

2
Rgµν = 8πGTµν , (5.19)

where the Ricci tensor is

Rµν = ∂λΓ
λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ , (5.20)

and the Ricci scalar
R = gµνRµν . (5.21)

Recalling Eq. (5.12) it is not difficult to calculate the Ricci tensor and Gµν .
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With the energy-momentum tensor in Eq. (5.10) we get two equations:

H2 =
8πG

3
ρ− K

a2
, (5.22)

ä

a
= −4πG

3
(ρ+ 3P ) , (5.23)

which are known as the Friedmann equations. The density and pressure sum
up the contributions from all components in the universe. We can define the
critical density as the energy density which would correspond to a given H in
a flat universe

ρc =
3H2

8πG
. (5.24)

The critical density is a function of time since the Hubble parameter is not a
constant. The critical density today

ρc,0 =
3H2

0

8πG
, (5.25)

where H0 is the Hubble parameter today. It is also customary to define the
fraction of each component today as

Ωj ≡
ρj,0
ρc,0

, (5.26)

where j can be m (matter), r (radiation) and Λ (dark energy). We can also
define the curvature density parameter

ΩK ≡ −
K

a2
0H

2
0

. (5.27)

It follows that ΣjΩj = 1. A combining fit of Planck 2015 and other cosmolog-
ical data yields ΩK = 0.000 ± 0.005 at 95% CL [4], which essentially tells us
the universe is very close to flat today. From now on we will just assume the
universe is flat and set K = 0. Considering Eqs. (5.16), (5.17) and (5.18) we
can track the energy density of different components back in time with their
density today, hence Eq. (5.22) becomes

H2 = H2
0

[
Ωm

(
a

a0

)−3

+ Ωr

(
a

a0

)−4

+ ΩΛ

]
. (5.28)

So as long as the present fractions Ωi are non-zero, the universe begins in
an era in which radiation dominates, and is later dominated by matter, and
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finally it is dominated by dark energy.
During the periods in which the energy density is dominated by one com-

ponent, the different evolution stages can be obtained by solving Eq. (5.28):

• Radiation domination:
a ∝ t1/2 ∝ τ . (5.29)

• Matter domination:
a ∝ t2/3 ∝ τ 2 . (5.30)

• Dark energy domination:

a ∝ eH0t ∝ 1

τ0 − τ
. (5.31)

In summary, in a matter or radiation dominated universe we have

a ∝ t2/3(1+w) ∝ τ 2/(1+3w) , (5.32)

while in the dark energy dominated universe the simple power law no longer
holds.

5.1.2 Inhomogeneities and Anisotropies

We have solved the metric evolution in the previous section within a single-
component, homogeneous and isotropic universe. The metric is only character-
ized by the scale factor a(t), which grows either as power law or as exponential
of time t. However, inhomogeneities and anisotropies add complexity to this
simple picture. In what follows we will introduce the effect of anisotropies and
inhomogeneities and treat them as “perturbations” over an isotropic homoge-
neous “background”.

In a universe with inhomogeneities and anisotropies, the metric is per-
turbed with

δgµν = gµν − ḡµν , (5.33)

where ḡµν is the metric in the background universe. The corresponding space-
time interval can be then written in terms of the perturbed metric as

ds2 = a2(τ)
[
(1 + 2A)dτ 2 − 2Bidx

idτ − (δij + Cij)dx
idxj

]
. (5.34)

This can be compared with Eq. (5.4) where the spacetime dependent variables
A, B and C all vanish. Generically these metric perturbations can be decom-
posed into scalar, vector and tensor components, but this parametrization is
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redundant and we always have the gauge freedom to choose a specific time
slicing of the spacetime and reduce some of the parameters. Throughout this
chapter we will adopt the conformal Newtonian gauge [165], which is more
convenient when we discuss CMB and matter power spectrum. In this gauge,
the metric is

ds2 = a2(τ)
[
(1 + 2Ψ)dτ 2 − (1− 2Φ)dxidxi

]
, (5.35)

where Ψ and Φ are known as the Bardeen potentials [166]. The vector and
tensor perturbations are not explicit in the Newtonian gauge. This is a conve-
nient gauge as in this thesis we only focus on the scalar perturbations which
dominate the growth of inhomogeneities and anisotropies.

The energy-momentum tensor is also perturbed due to the perturbation of
energy density, pressure and velocity. Moreover, there is one more ingredient–
the anisotropic stress Σ—in an anisotropic universe which arises from the
collisionless particles whose dynamics can not be described by a specific ve-
locity in one direction, like photons or neutrinos. Without loss of generality,
we can set Σ0

0 = Σi
0 = Σ0

i = 0 and TrΣ = 0, since otherwise these entries
can be removed by the redefinition of the energy-momentum tensor and its
perturbations. With the anisotropic stress, the energy-momentum tensor in
Eq. (5.14) is perturbed as

δT µν = (δρ+ δP )ŪµŪν + (ρ̄+ P̄ )(δUµŪν + ŪµδUν)− δPδµν − Σµ
ν . (5.36)

The stress is always small and can be neglected most of the time during the
evolution of the universe, however, as we will see in Sec. 5.2, it does leave some
imprints on the the metric perturbations.

In the rest frame of the fluid we can relate the spacetime interval to the
conformal time

ds = a(τ)
√

1 + 2Ψdτ , (5.37)

and evaluating the four-velocity explicitly using Eq. (5.9), we obtain

δT 0
0 = δρ , (5.38)

δT i0 = (ρ̄+ P̄ )vi , (5.39)

δT i j = −δPδij − Σi
j , (5.40)

where have defined the perturbations to the fluid velocity as vi ≡ dxi/dτ . We
can again plug in the metric and energy-momentum tensor perturbations back
to Eq. (5.13). Evaluating the ν = 0 component and expanding in the small
perturbations, at zeroth order we recover Eq. (5.15) for the mean pressure P̄
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and density ρ̄. At first order, we find

δ′ +

(
1 +

P̄

ρ̄

)
(∇ · v − 3Φ′) + 3H

(
δP

δρ
− P̄

ρ̄

)
δ = 0 , (5.41)

where we define the overdensity δ ≡ δρ/ρ̄. This is the perturbed continuity
equation. We will not talk about inflation models in this thesis, but simple
inflation models predict initial conditions with adiabatic fluctuations where
the density and pressure perturbations have the relation

δP

δρ
=
P̄ ′

ρ̄′
= c2

s , (5.42)

where cs is the sound speed of the fluid. We can also write Eq. (5.41) in Fourier
space, where a general function in terms of spacial coordinates are transformed
as

f(x) =

∫
d3k

(2π)3
eik·xf(k) . (5.43)

It follows that Eq. (5.41) has the form

δ′ + (1 + w)(θ − 3Φ′) + 3H(c2
s − w)δ = 0 , (5.44)

where we have also introduced the notation θ = ikivi and used the equation
of state P̄ = wρ̄. In Eq. (5.44) the overdensity, velocity and gravitational
potential are functions of k and τ . It also benefits to evaluate the ν = i
component of Eq. (5.13) where we arrive at the Euler equation

θ′ +H(1− 3c2
s)θ −

k2c2
s

1 + w
δ + k2σ − k2Ψ = 0 , (5.45)

where the stress perturbation

σ ≡ −
(k̂ik̂

j − 1

3
δji )Σ

i
j

ρ̄+ P̄
. (5.46)

As we mentioned before, the energy-momentum conservation equations (5.15),
(5.41), (5.45), apply to each decoupled component of the fluid independently.

The same expansion can also be applied to the Einstein equation. Evalu-
ating the 00 component of Eq. (5.19), to the zeroth order we arrive at the first
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Friedmann equation (5.22) for ρ̄, i.e.

H2 =
8πG

3
a2ρ̄ . (5.47)

And at first order,

k2Φ + 3H(Φ′ +HΨ) = −4πGρ̄a2δ = −3

2
H2δ , (5.48)

where in the rhs we have introduced (5.47). Evaluating the 0i component, we
get the equation

k2(Φ′ +HΨ) = 4πGa2(ρ̄+ P̄ )θ . (5.49)

And for traceless part of the ij equations we get

k2(Φ−Ψ) = 12Ga2(ρ̄+ P̄ )σ , (5.50)

where we have used the definition of σ in Eq. (5.46). Eq. (5.50) reveals the fun-
damental idea that in the absence of anisotropic stress, the two gravitational
potentials are equal, i.e.

Φ = Ψ . (5.51)

We will discuss the effect of σ in the next section, but let us keep it 0 for now.
The last thing is to evaluate the trace part of Eq. (5.19). Again to the

zeroth order we arrive at the second Friedmann equation (Eq. (5.23)) for P̄
which can be rewrite as

2H′ +H2 = −8πGa2P̄ . (5.52)

And at first order,

Φ′′ +H(Ψ′ + 2Φ′) + (2H′ +H2)Ψ +
k2

3
(Φ−Ψ) = 4πGa2δP . (5.53)

Eqs. (5.48) (5.49) (5.50) and (5.53) are the perturbed Einstein equations.
Altogether when universe is dominated by a single component with P = wρ

(so for that dominating component we can approximate c2
s by w) substituting

the Friedmann Equations (5.47), and (5.52), together with Eq. (5.48) into
Eq. (5.53), we obtain the evolution equation for the gravitational potential

Φ′′ + 3(1 + w)HΦ′ + wk2Φ = 0 . (5.54)
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while for the density perturbations, using Eq. (5.48), one gets

δ = − 2k2

3H2
Φ− 2

H
Φ′ − 2Φ . (5.55)

Let us introduce the comoving distance a signal can propagate within spe-
cific time:

d =

∫ τ

0

vdτ ′ ∝ τ . (5.56)

In case the signal travels at a speed of light, d is called particle horizon, i.e., it
shows the maximum distance particles have traveled within conformal time τ .
It can be easily shown that τ is proportional to 1/H in a matter or radiation
dominated universe where a ∝ τn. Therefore d ∝ 1/H characterizes the max-
imum scale which perturbations can propagate. We will see below that the
gravitational potentials and perturbations behave differently over and inside
the particle horizon. In case the perturbation travels like a sound wave with
the sound speed cs, we can show that d ∝ cs/H assuming constant cs. This is
also called the sound horizon. It is relevant for radiations undergoing acoustic
oscillations in matter and radiation eras.

Superhorizon Limit

Superhorizon limit implies k � H, so we can drop the term proportional to k2

in Eq. (5.54). A trial solution Φ ∝ τ p yields p = 0 or p = 1−6(1+w)/(1+3w)
(which is negative for w = 0 or w = 1/3). The solution indicates two modes
for the evolution of Φ, one is the “growing” mode which indeed is constant,
and the other one is the decaying mode which quickly decays to 0. Thus in
the superhorizon scale the gravitational potentials remain constant.

As for the density perturbations, in the superhorizon limit the first term
in Eq. (5.55) is neglected. Only the decaying mode contributes to Φ′ so Φ′/H
also decays quickly. As a consequence,

δ ' −2Φ ∝ const . (5.57)

This applies for the radiation density fluctuations in a radiation dominated era
and matter density fluctuations in a matter dominated era. Furthermore, if
we started from adiabatic initial conditions for all components δρi/ρ

′
i takes the

same value, which using the continuity equation implies that δi/(1 +wi) takes
the same value for all components (so δm = 3/4δr). Thus in this case both
matter and radiation density fluctuations are constant in either the matter or
radiation dominated era.
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Dark energy only dominates the universe much later and has little affect on
the CMB and matter power spectrum. As a consequence, we will not discuss
dark energy dominated era in detail in this thesis.

Subhorizon Limit

In the subhorizon limit, the evolution is different depending on whether radi-
ation or matter dominates the expansion.

• Radiation dominated. The evolution equation for gravitational potential
is still Eq. (5.54) with w = 1/3, which has a solution

Φ(k, τ) = −C(k)

x3
(sinx− x cosx) , (5.58)

where we have dropped a mode leading to infinite potential at τ = 0.
C(k) is a positive function of k set by initial conditions and x is defined
as x ≡ kτ/

√
3. Inside the horizon x� 1 (remember k � H ∼ 1/τ) and

we have the approximation

Φ(k, τ) ' −3C(k)
cos(kτ/

√
3)

(kτ)2
. (5.59)

This is, in radiation era, the gravitational potential oscillates with an
amplitude decaying with time.

The density perturbation is dominated by that of radiation and we im-
mediately find from Eq (5.55) that

δr ' −
2k2

3H2
Φ = 2C(k) cos(kτ/

√
3) , (5.60)

where we only keep the first non-decaying term. Unlike gravitational
potential, the radiation density undergoes oscillation with constant am-
plitude.

As for the density of dark matter, at the time of interest dark matter
is already decoupled from the fluid. As mentioned above, the energy-
momentum tensor of any decoupled component is conserved separately,
so we can combine the time derivative of Eq. (5.44) with Eq. (5.45) and
Eq. (5.44) (both for with w = cs = 0) and neglecting terms O(H/k) to
get the evolution equation for cold dark matter fluctuations

δ′′cdm +Hδ′cdm = −k2Φ . (5.61)
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Plugging in Eq. (5.48) we find

δ′′cdm +Hδ′cdm − 4πGa2ρ̄cdmδcdm ' 0 . (5.62)

In radiation or matter dominated universe, the Hubble parameter is
related to the scale factor by

H2

H2
0

=
Ω2
m

Ωr

(
1

y
+

1

y2

)
, (5.63)

where y ≡ a/aeq with aeq as the scale factor at matter-radiation equality
(one can easily verify this equation in the radiation or matter era from
Eqs. (5.29) and (5.30)). Eq. (5.62) are solved with the solutions

δcdm ∝

2 + 3y

(2 + 3y) ln

(√
1 + y + 1√
1 + y − 1

)
− 6
√

1 + y
. (5.64)

In the radiation era y � 1 and we are left with the mode δcdm ∝ ln a.

• Matter dominated. In the matter domination era Eq.(5.54) is further
simplified with w = 0, i.e.

Φ′′ +
6

τ
Φ′ = 0 . (5.65)

The gravitational potential Φ comes with a constant mode and a decay-
ing mode proportional to τ−5. The radiation density contrast can be
obtained from the combination of Eq. (5.44) and Eq. (5.45) which yields

δ′′r +
1

3
k2δr = −4

3
k2Φ . (5.66)

This is just the harmonic oscillator with a constant driving force. The
solution is

δr = D(k) cos(kτ/
√

3) + E(k) sin(kτ/
√

3)− 4Φ , (5.67)

where Φ is a constant.

As for matter fluctuations, in matter era matter perturbation dominates
so we can use either Eq. (5.55) with a constant Φ and using thatH ∝ 1/τ
or use Eq.(5.62) which still holds but with y � 1. Either way we find
the growing mode δcdm ∝ a ∝ τ 2.
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Let us summarize what we have discussed in this section. Outside the
horizon, both gravitational potentials and density perturbations are frozen.
Inside the horizon and during radiation era, gravitational potentials decay
while radiation perturbation oscillates with a constant amplitude. Radiation
perturbation continues to oscillate in the matter era, which induces acoustic
peaks in the CMB temperature spectrum while gravitational potentials remain
constant. On the other hand, inside the horizon, matter perturbation grows
only logarithmically in the radiation era, but quickly becomes proportional to
scale factor in the matter dominated era. The different behavior in matter
and radiation eras form the shape of matter power spectrum. Furthermore
light particles like baryons and neutrinos change from behaving as radiation
to behave as matter as the universe evolve. For example in the early universe
when the temperature is high, baryons couple tightly to photons and expe-
rience acoustic oscillations. However, after decoupling, baryons behave like
dark matter and its perturbation grows as that of dark matter. The acous-
tic oscillation at baryon decoupling does leave some imprint in the clustering
of matter (traced by galaxy clusters) today, which characterizes the scale of
sound horizon in the baryon acoustic oscillation (BAO) measurements. As for
neutrinos we discuss their effects next.

5.2 Effects of Neutrinos in Cosmology

In the previous discussion we have neglected neutrinos, especially we have
neglected the neutrino anisotropic stress to make the gravitational potentials
equal (Φ = Ψ). However, as an ingredient in the universe, neutrinos play
important roles in the expansion of the universe and the growth of matter
perturbations.

In Sec. 5.2.1 we show the effects of neutrinos on CMB and big bang nucle-
osynthesis (BBN) due to the modification of the expansion rate of the universe,
and in Sec. 5.2.2 we show how neutrinos suppress the structure formation at
small scales. The discussions in this section are based on Refs. [164, 167].

5.2.1 Effects on Expansion Rate

Neutrino energy density and pressure enters the Friedman equations (Eqs. (5.22)
and (5.23)) of an homogeneous and isotropic universe (these effects are usually
denoted as “background” effects). This has the direct effect that the expan-
sion rate has to be modified. For example the time of nucleosynthesis or of
matter-radiation equality is changed.
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In the early universe neutrinos are tightly coupled with electrons and
baryons. The rate of the weak interactions can be approximated by

Γν = nν〈σv〉 ∼ G2
FT

5 , (5.68)

where GF is Fermi constant. Neutrinos decouple when the interaction rate is
comparable to the expansion rate, which in the radiation era is

Γν ∼ H ∼
√
GT 4 . (5.69)

We see immediately from Eqs. (5.68) and (5.69) that neutrinos decouple at the
temperature T ∼ 1 MeV. After that neutrinos free-stream without interacting
with the background plasma. Soon after neutrino decoupling the temperature
drops below the mass of electrons, and electrons and positrons begin to an-
nihilate to photons (and very few neutrinos). This enhances the temperature
of photons (and hence that of all other particles in the plasma in equilibrium
with the photons) relative to neutrinos. During annihilation, the total entropy

S ∝ g∗,sT
3 (5.70)

is conserved, where T is the temperature of the plasma and g∗,s is the effective
number of degrees of freedom defined as

g∗,s =
∑
i=b

gi +
7

8

∑
i=f

gi , (5.71)

which sums up the spin degree of freedom of bosons and fermions in ther-
mal equilibrium. Before annihilation both photons, electrons and positrons
are counted as relativistic species in the plasma (so g∗,s = 11/2), while after
annihilation only photons remain (g∗,s = 2). Thus the conservation of entropy
density implies that

Tν =

(
4

11

)1/3

Tγ . (5.72)

Therefore, after annihilation we can write the neutrino energy density as

ρν =

[
7

8

(
4

11

)4/3

Neff

]
ργ , (5.73)

where ργ is the energy density of photons. We have introduced Neff as the effec-
tive number of neutrino species. Theoretical calculation predicts Neff = 3.046
(not exactly 3 due to the energy leak from e+e− annihilation to neutrinos). A
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deviation from this value has important effects on the big bang nucleosynthesis
(BBN) and CMB, as we will see below.

Effects on BBN

In the early universe when temperature is much higher than 1 MeV, the pri-
mordial plasma consisting of photons, neutrinos, electrons and baryons is in
thermal equilibrium. While being non-relativistic, protons and neutrons have
the number density

n = g

(
mT

2π

)3/2

e−m/T . (5.74)

Therefore, the ratio of number density for protons and neutrons in equilibrium
is (

nn
np

)
eq

=

(
mn

mp

)3/2

e−Qnp/T , (5.75)

where Qnp = mn−mp = 1.3 MeV. The small mass difference is not important
when it comes to the prefactor mn/mp, but it does make a big difference when
it enters the exponential. Especially when the temperature drops below 1 MeV,
the neutron-to-proton ratio decreases drastically. Neutrons and protons are
balanced mainly though beta decay and inverse beta decay, say

n+ νe ↔ p+ e−

n+ e+ ↔ p+ ν̄e . (5.76)

The two interaction rates are equal and can be approximated by Γnp ∝ G2
FT

5

provided that ne = 2nνe since they share the same matrix element. In case
neutrino number density deviates from this relation, the neutron-proton con-
version rate

Γnp ∝ (1 + n̄νe)T
5 , (5.77)

where n̄νe = nνe/n
∗
νe is the electron neutrino number density normalized to

the equilibrium number density n∗νe = ne/2. At about 1 MeV the relativistic
degree of freedom

g∗ = 10.75 + ∆Neff , (5.78)

where ∆Neff = Neff − 3.046. In the matter dominated era, the total energy
density ρtot ∝ g∗T

4, and from the Friedmann equation (5.22) we see the Hubble

rate H ∝ g
1/2
∗ T 2. Neutrons freeze out from the plasma when the neutron-

proton conversion rate becomes comparable to the the Hubble rate, and it is
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not difficult to find the freezing-out temperature

Tf ∝

[
g

1/2
∗

(1 + n̄νe)/2

]1/3

. (5.79)

It shows that both Neff and electron neutrino number density can affect the
time of neutron decoupling. A larger Neff can increase the expansion rate of
the universe, which increases the freezing-out temperature; on the other hand,
larger number density of electron neutrinos tend to increase the neutron-proton
conversion rate, postponing the time of decoupling. The neutron-to-proton
ratio nn/np is roughly frozen after neutron decoupling (a few neutrons decay,
though) until the temperature drops below 0.1 MeV, when the synthesis of
nuclei begin. Almost all the remaining neutrons are bounded in the nuclei,
thus the neutron-to-proton ratio at decoupling is of crucial importance in the
determination of the abundances of primordial elements.

Effects on CMB

The main effects on the CMB spectrum are associated with the modification of
the time of matter-radiation equality. Given the dependence of different com-
ponents on the scale factor, we can find the scale factor at matter-radiation
equality as

aeq

a0

=
Ωγ + Ω̃ν

Ωb + Ωcdm

. (5.80)

Note that

Ω̃ν ≡
ρν,eq

ρc,0

a4
eq

a4
0

(5.81)

is not the fraction of neutrino energy density today, but rather the energy
density at equality extrapolated until today. This is because neutrinos are
massive and may undergo non-relativistic transition in the matter dominated
era. The matter-radiation equality happens at around Tγ ∼ 0.7 eV when
neutrinos with mass of order 1 eV or smaller are still relativistic. It follows
that neutrinos contribute to the radiation energy density though Neff . Thus
a modification of Neff will shift the time of matter-radiation equality. We will
see below that this has important effects on the CMB spectrum.

Photons decouple at the temperature Tγ ∼ 0.3 eV, when electrons and
protons combine to form atoms and the universe becomes transparent to pho-
tons. This is an epoch called recombination at which time CMB photons
began free-streaming and eventually form the spectrum we observe today. As
we have seen in the previous section, photons undergo acoustic oscillations
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before decoupling, and induce peaks in the CMB temperature spectrum. The
decoupling temperature is quite close to that of matter-radiation equality so
recombination takes place right after entering matter radiation era. During
radiation era and inside the horizon gravitational potentials decay. At recom-
bination when radiation is still not negligible, gravitational potentials continue
to decay, which acts as a driving force and enhances the anisotropy spectrum.
This effect is not seen in Eq. (5.66) where we treat Φ as a constant, but does
present if we keep the time derivatives as in Eq. (5.99). The effect is more sig-
nificant when equality is closer to the time of recombination (otherwise deep
inside the matter era gravitational potentials remain constant). At recombi-
nation neutrinos are still relativistic and should be counted as radiation. The
presence of neutrinos increases the radiation density and postpones the time
of equality. This enhances the peaks of CMB anisotropy spectrum at small
scales (inside the horizon).

In addition, as we have seen from Eq. (5.67), the acoustic oscillation of
photons are characterized by the size of sound horizon (we approximate it
by τ/

√
3 in that equation). Adding neutrinos changes the expansion history

of the universe and affects the size of sound horizon at recombination. As a
consequence, the CMB acoustic peaks also shift with different neutrino energy
density.

5.2.2 Effects on Matter Perturbations

The main effect of neutrinos on matter perturbations is to suppress their
amplitude at small scales. To understand the origin of this effect, let us begin
by solving the equations for the density perturbations of the neutrinos density.

Neutrinos in equilibrium can be described by the Fermi-Dirac distribution

f0(ε) =
gν

(2π~)3

1

eEν/(kBTν) + 1
=

gν
(2π~)3

1

eε/(kBTν0) + 1
, (5.82)

where ε = aEν = a
√
p2 +m2 =

√
q2 + a2m2 with q ≡ ap. Tν0 is the neutrino

temperature today and after decoupling it is verified that Tν0/Tν = a assuming
the scale factor today a0 = 1. kB is the Boltzmann constant. For neutrinos
the spin degree of freedom gν = 1.

In a universe with inhomogeneities and anisotropies neutrinos deviate from
the equilibrium and the phase space distribution is perturbed as

f(xi, qj, τ) = f0(q)
[
1 +N (xi, q, nj, τ)

]
, (5.83)

where n̂ marks the orientation of the momentum. The phase space distribution
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follows the neutrino Boltzmann equation

Df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dni

dτ

∂f

∂ni
=

(
∂f

∂τ

)
C

. (5.84)

The right-hand side of the equation is induced by neutrino collisions. After
neutrino decoupling, this term can be set to 0. The derivatives in the Boltz-
mann equation can be obtained from the geodesic equation

q0dq
µ

dτ
+ Γµαβq

αqβ = 0 . (5.85)

With this we can write the Boltzmann equation as

∂N
∂τ

+ i
q

ε
(k · n̂)N +

d ln f0

d ln q

[
Φ′ − i ε

q
(k · n̂)N

]
=

1

f0

(
∂f

∂τ

)
C

. (5.86)

The corresponding energy-momentum tensor is the integral of phase space
distribution, i.e.

Tµν =

∫
d3q√
−g

qµqν

ε
f , (5.87)

where g is the determinant of the metric gµν . We can thus relate the phase
space perturbation to the perturbations in energy density and pressure. Specif-
ically, for massless neutrinos we can expand the perturbation in terms of Leg-
endre polynomials Pl(k̂ · n̂) where we define

Fν(k, n̂, τ) ≡
∫
q3f0Ndq∫
q3f0dq

=
∞∑
l=0

(−i)l(2l + 1)Fνl(k, τ)Pl(k̂ · n̂) . (5.88)

Substituting it into Eq. (5.87) we find

δν = Fν0 , (5.89)

θν =
3

4
kFν1 , (5.90)

σν =
1

2
Fν2 . (5.91)
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We can also work out the evolution equations from Eq. (5.86), where we obtain

δ′ν = −4

3
θν + 4Φ′ , (5.92)

θ′ν = k2(
1

4
δν − σν) + k2Ψ , (5.93)

F ′νl =
k

2l + 1

[
lFν(l−1) − (l + 1)Fν(l+1)

]
, l ≥ 2 . (5.94)

The above equations apply to relativistic neutrinos whose masses can be ne-
glected. We can solve the equations in the superhorizon limit kτ � 1 and
find [163]

δν = −2Ψ , (5.95)

θν =
1

2
(k2τ)Ψ , (5.96)

σν =
1

15
(kτ)2Ψ , (5.97)

Φ = (1 +
2

5
Rν)Ψ , (5.98)

where Rν ≡ ρ̄ν/ρ̄r. This is consistent with our discussion in the previous
section that density perturbations are frozen outside the horizon. But we
see from Eq. (5.98) that the neutrino stress does induce a small difference
between the two potentials. Still for superhorizon scales the neutrino density
perturbations are of the same order as those of the other components.

Inside the horizon, the perturbations are transferred to higher multiples
which undergo fast oscillation and the overdensity is damped. We can also see
this by combining Eq. (5.92) and (5.93), i.e.

δ′′ν +
1

3
k2δν = −4

3
k2Ψ + 4Φ′′ − 4

3
k2σν . (5.99)

This looks like Eq. (5.66) for radiation overdensity but now we have more
terms corresponding to the derivative of potential and the anisotropic stress.
σν serves as the viscosity of the neutrino fluid which damps the oscillation
of density contrast. In the radiation era an analytic solution is complicated
because of Φ′′. In the matter era the gravitational potentials approximately
remain constant and we have

δν = −4Ψ + C(k)
sin(kτ)

kτ
. (5.100)

104



The second term decays rapidly with time and we are left with a constant
density perturbation proportional to the gravitational potential.

For massive neutrinos the simple relation ε = q doesn’t hold. Instead,
we expand the phase space perturbation N directly in terms of the Legendre
series

N (k, n̂, q, τ) =
∞∑
l=0

(−i)l(2l + 1)Nl(k, q, τ)Pl(k̂ · n̂) . (5.101)

We can then obtain from Eq.(5.86) that

N ′0 = −qk
ε
N1 − Φ′

d ln f0

d ln q
, (5.102)

N ′1 =
qk

3ε
(N0 − 2ψ2)− εk

3q
Ψ
d ln f0

d ln q
, (5.103)

N ′l =
qk

(2l + 1)ε
[lψl−1 − (l + 1)Nl+1] , l ≥ 2 . (5.104)

By using Eq. (5.87) the perturbed energy density, pressure, velocity and shear
stress of neutrinos are given by

δρν = 4πa−4

∫
q2dqεf0(q)Ψ0 , (5.105)

δPν =
4π

3
a−4

∫
q2dq

q2

ε
f0(q)Ψ0 , (5.106)

(ρ̄ν + P̄ν)θν = 4πka−4

∫
q2dqqf0(q)Ψ1 , (5.107)

(ρ̄ν + P̄ν)σν =
8π

3
a−4

∫
q2dq

q2

ε
f0(q)Ψ2 . (5.108)

We can again combine the perturbed continuity equation (Eq. (5.44)) and
Euler equation (Eq. (5.45)) to find the evolution of neutrino overdensity in the
non-relativistic limit (neutrinos only become non-relativistic after radiation
era), and it is not different from Eq. (5.61), i.e. the evolution of dark matter
in matter era. The solution is similar to Eq. (5.64) which is

δν = A(k) ln τ +B(k)− (kτ)2

6
Ψ . (5.109)

The constants are determined by matching Eq. (5.100) to the corresponding
ones at the time at which neutrinos become non-relativistic. Let us introduce
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knr that corresponds to the size of the horizon at the time at which neutrinos
become non-relativistic. So if at that time a perturbation mode has entered
the horizon (i.e. k ≥ knr), the matching is to the solution in Eq. (5.100) whose
amplitude is small. From then now that δν eventually grows as a like the
behavior of dark matter but its amplitude is always smaller because it starts
from a smaller value. On the other hand for perturbation modes which are
still outside the horizon at the neutrino non-relativistic transition (k < knr),
the overdensity of neutrinos is determined by the “frozen” perturbation which
has the same order as δcdm. Even for modes outside the horizon but later enter
the horizon after non-relativistic transition, δν begins to grow proportionally
to a and it quickly becomes the same as the overdensity of the dark matter.
So we conclude that neutrino overdensity is suppressed relative to that of dark
matter at scales smaller than knr.

All this leaves an imprint in the matter power spectrum. Let us recall
Eq. (5.62) but restore δρcdm as the total overdensity (i.e. keep the contribution
from baryons and neutrinos), we have

δ′′cdm +Hδ′cdm = 4πGa2δρ . (5.110)

We know from the previous discussion that for k corresponding to scales
smaller than the size of the horizon at the time of the neutrino non-relativistic
transitions δcdm = δb (δb is the baryon density contrast) and δν grows less ef-
ficiently so we can approximate it by 0. On the other hand, neutrino energy
density does contribute to the expansion rate via the Friedmann equation
(Eq. (5.47)). After non-relativistic transition, it is more convenient to define
the neutrino density fraction as

fν ≡
ρ̄ν

ρ̄cdm + ρ̄b + ρ̄ν
=

Ων

Ωm

, (5.111)

where

Ων ≡
ρν,0
ρc,0

=
Σmνnν
ρc,0

. (5.112)

With this definition and recall the relation Eq. (5.30) we can rewrite Eq. (5.110)
as

δ′′cdm +
2

τ
δ′cdm −

6

τ 2
(1− fν)δcdm = 0 , (5.113)

where fν is the density fraction of neutrinos defined in Eq. (5.111). The
solution of Eq. (5.113) corresponds to a growing mode

δcdm ∝ a1−3fν/5 . (5.114)
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Compared with the solution without neutrinos where δcdm ∝ a, the density
contrast of dark matter is reduced. This simply says that the growth of matter
perturbation are suppressed at scales which are smaller than the horizon at
the time of the non-relativistic transition (i.e. for k > knr).

The matter power spectrum P (k) is defined as P (k) ≡ 〈δ2
m〉. A careful

calculation gives [168]

P (k)fν − P (k)fν=0

P (k)fν=0
' −8fν , (5.115)

which means the matter power spectrum is suppressed at those small scales,
and the suppression depends on the masses of neutrinos.

In summary, we have seen that neutrinos are able to affect the evolution
of the universe both at background and perturbation levels. With the current
precision of cosmological observations both these effects can be constrained.
As illustration we show in Fig. 5.1 the results of an analysis of Planck 2015
high multipole TT, EE, TE spectrum and low multipole temperature and
polarization data, as well as lensing and BAO measurements in the framework
of ΛCDM model with flexible neutrino masses and effective number of neutrino
species Neff . We find the marginalized posterior of neutrino mass is Σmν <
0.18 eV at 95% CL and Neff = 3.04 ± 0.18 at 68% CL. So this analysis puts
tight constraints on additional neutrino species in the universe, especially for
neutrinos heavier than this mass limit.

We will discuss in the next section how to reconcile additional massive
neutrino species in cosmology by adding new interactions.

5.3 Sterile Neutrinos and New Interactions

Besides the three active neutrino flavors, anomalies in short baseline neu-
trino experiments also suggest the existence of addition sterile neutrino species.
As we will show in Sec. 5.3.1, sterile neutrinos with mass of order eV is in ten-
sion with the cosmological observations. We introduce new interactions among
sterile neutrinos to alleviate this tension in Sec. 5.3.2, and solve the quantum
kinetic equations (QKEs) to quantify the effects of the new interactions in
Sec. 5.3.3.

5.3.1 Short Baseline Anomalies and Sterile Neutrinos

Why are neutrinos massive? We know from neutrino oscillation experi-
ments that neutrinos are not massless, but the mechanism of generating neu-
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Figure 5.1: Posterior probability distribution of Neff and the sum of neutrino
masses. The data used is Planck 2015 high multipole TT, EE, TE spectrum
and low multipole temperature and polarization data, as well as lensing and
BAO measurements. The contours are allowed at 68% and 95% CL.

trino masses is still a missing piece in the Standard Model of particle physics.
Of various models, the seesaw mechanisms are the most popular choices to
accommodate massive neutrinos. In seesaw models, new particles have to be
introduced to the Standard Model to break the B − L gauge symmetry. Pos-
sible candidates for these new particles are right-handed neutrinos which are
SU(2) singlets. These neutrinos do not interact with particles in the frame-
work of Standard Model and are also refer to as “sterile”. Generically they are
very heavy and they decouple well before any interesting epoch discussed in
this thesis. However there are scenarios in which they can be light (with masses
of the order of the three “active” neutrinos of the Standard Model). Such light
sterile neutrinos can mix with active neutrinos and affect the neutrino flavor
oscillation probabilities.

Indeed the existence of light sterile neutrinos has been invoked to explain
some anomalies observed in neutrino oscillation experiments at short baselines.
The first evidence came from the LSND experiment [169] which observed ex-
cess events of ν̄µ → ν̄e oscillations. An excess was also observed in the an-
tineutrino mode of MiniBooNE [170] which was consistent with the results
of LSND, while the search for νµ → νe oscillations reported excess only in
the low energy range [171]. GALLEX [56, 172, 173] and SAGE[174] detected
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electron neutrinos produced by radioactive sources and observed deficit in the
νe capture rates. The deficit is called Gallium anomaly. Furthermore, some
reactor antineutrino measurements also reported deficit in the ν̄e flux [175] in
the near detectors. These anomalies cannot be explained in the framework
of three active neutrino oscillations. This can be understood from Eq. (2.16)
where we write the neutrino flavor transition probability from one flavor to
another flavor in the two neutrino case as

Pαβ = sin2 2θ sin2

(
1.27

∆m2

eV2

L

km

GeV

E

)
, (5.116)

Take LSND as example. The typical energy of the neutrinos produced by the
accelerator is less than hundred MeV and the maximum mass difference of
active neutrinos is ∆m2 ∼ 10−3 eV2. We thus require the baseline L to be
as long as hundred kilometers for significant oscillations to happen. However
at LSND neutrinos travel only about 30 meters before reaching the detector.
So the results can only be explained by introducing additional light neutrinos
with much larger mass difference. We know from precision electroweak data
that there are only three active (this is, with weak interactions) neutrinos. So
any additional light neutrino states invoked to resolve these anomalies must
be sterile.

There are several works in the literature which analyze these anomalies
in such extended scenarios adding one (what is usually refereed to as 3+1
models) or two (3+2 models) sterile neutrinos. For example in Ref. [176]
it was concluded that some reasonable fit could be found to explain these
anomalies with a 4th neutrino of mass of the order O(eV). For illustration we
show in Fig. 5.2 the allowed range of ∆m2

41 ' ∆m2
42 ' ∆m2

43 vs the relevant
combination of mixing angles from that analysis

Recently, Daya Bay collaboration [177] pointed out that the reactor an-
tineutrino anomaly may be caused by the uncertainties in the expected neu-
trino fluxes, but a combined analysis of Daya Bay data with NEOS and DANSS
experiments still allowed the parameter space for eV sterile neutrinos [178].

Besides the debate on the status of these hints towards light sterile neutri-
nos in oscillation experiments, the non-interacting light sterile neutrinos are
also in great tension with cosmological observations. This is because light
sterile neutrinos which mix with the active ones (as required to explain the
oscillation anomalies) are in thermal equilibrium with active neutrinos in the
early universe which results in Neff ' 4. As we have discussed at the end
of the previous section, larger Neff will enhance and shift the peaks in the
CMB anisotropy spectrum. Furthermore, large sterile neutrino mass (com-
pared with active neutrinos) will greatly suppress the matter power spectrum
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Figure 5.2: Allowed range of parameters for a 4th sterile neutrino to explain
the short baseline anomalies.

at small scales. The combined analysis of Planck 2015 and other cosmolog-
ical observations gives Neff = 3.04 ± 0.18 at 68% CL and Σmν < 0.17 eV
at 95% CL [4] (which are also consistent with the results we have shown at
the end of the previous section), manifesting the tension between eV sterile
neutrinos and cosmology.

5.3.2 Introducing New Interactions

The tension with cosmology can be relieved by introducing new mecha-
nisms, able to suppress the contribution of sterile neutrinos to the cosmological
observables. One such possibility is that of new interactions between sterile
neutrinos [179, 180], for example mediated by a new massive gauge boson X

Lint = gX ν̄sγµ
1

2
(1− γ5)νsX

µ , (5.117)

where gX is the gauge coupling. In the energy scale smaller than the gauge
boson mass MX , we can integrate X out to obtain an effective four sterile
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neutrino interaction Lagrangian with effective coupling

GX√
2

=
g2
X

8M2
X

, (5.118)

in total analogy with the weak Fermi constant.
The rate of the new interaction (analogous to Eq. (5.68) for weak interac-

tion) is
ΓX = nνs〈σv〉 ' G2

XT
5
s , (5.119)

where nνs and Ts are the number density and temperature of the sterile neu-
trinos.

Likewise, the elastic forward scattering among the sterile neutrinos in the
early universe generated by this interaction lead to an effective potential for the
sterile neutrino in analogy to the MSW potential due to weak interactions of
active neutrinos with any fermions in their background. The effective potential
takes the form [181]

Veff = −8
√

2GX p εs
3M2

X

, (5.120)

where p is the momentum of the sterile neutrino and εs its energy density (in
what follows we will use ε to denote energy density instead of ρ used in the
previous sections to avoid confusion with the density matrix).

By introducing this effective potential the in-medium mixing angle between
active and sterile neutrinos deviates from its vacuum value by (see Eq. (2.24))

sin2 2θm =
sin2 2θ0

(cos 2θ0 + 2E/mst
2 Veff)2 + sin2 2θ0

, (5.121)

If Veff � fosc = mst
2/(2E) before neutrinos decoupling from the primordial

plasma, the in-medium mixing angle is highly suppressed and sterile neutrino
production is deferred until after decoupling. This late production is significant
since the entropy possessed by the three active neutrino species will be shared
with the sterile neutrinos, which leads to a reduction in the total neutrino
energy density. In the extreme case where each neutrino species achieves
the equal number density after decoupling, their temperatures inferred from
entropy conservation will be then Tν = (3/4)1/3 (4/11)1/3 instead of Eq. (5.72)
and Neff can be as low as 2.7 instead of 4. This greatly relieves the tension
between eV sterile neutrinos and CMB data, which requires Neff to be close
to 3 up to high significance.

One can qualitative estimate the range of interaction parameters for which
this mechanism can work by comparing the potential, the interaction rate,
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and the vacuum frequency fosc. We show them in units of the Hubble rate in
Fig. 5.3 as a function of the photon temperature for GX = 1010GF . For sim-
plicity we have assumed the neutrino temperature always to follow Eq. (5.72)
when calculating Veff and ΓX (but not when determining H) so above the
temperature relevant for e+e− annihilation they are underestimated. Never-
theless, as seen in the figure, the effective potential for that coupling is much
larger than the oscillation frequency above 1 MeV and hence the conversion
from active to sterile neutrinos will be strongly suppressed.

10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 1

T(MeV)

10 0

10 5

10 10

10 15

10 20

V
eff

/H with G
X
=10 10 G

F

!
X
/H with G

X
=10 10 G

F

f
osc

/H

Figure 5.3: The effective in-medium potential, the scattering rate and vacuum
oscillation frequency as a function of the temperature for GX = 1010GF and
gX = 0.1. We assume the light sterile neutrino mass mst = 1 eV.

This qualitative estimate indicates that strong enough interaction can lead
to the late production of sterile neutrinos and results in relatively low Neff .
With this motivation we now move to precisely quantify which range of inter-
actions can lead to successful description of the bulk of cosmological data.

5.3.3 Determination of Neff

The quantitative determination of Neff in scenarios with light sterile neu-
trinos which are brought in to equilibrium by their mixing with the standard
three active neutrinos requires to evaluate the time evolution of their energy
density. To do so we can use the quantum kinetic equations (QKEs) of the
3+1 neutrino ensemble [182].
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The starting point is the density matrix for the neutrinos

%(p, t) =


%ee %eµ %eτ %es
%µe %µµ %µτ %µs
%τe %τµ %ττ %τs
%se %sµ %sτ %ss

 , (5.122)

whose evolution is governed by the QKEs [183]

i
d%

dt
= [Ω, %] + C[%] , (5.123)

where C[%] represents the collision terms while the oscillation and in-medium
potential terms corresponding to CC interactions with the background elec-
trons and the NC interactions with the background neutrinos are

Ω =
1

2p
U †M2U +

√
2GF

[
−8p

3

(
El
M2

W

+
Eν
M2

Z

)]
+
√

2GX

[
−8p

3

Es
M2

X

]
. (5.124)

M2 = diag(0,∆m2
21,∆m

2
31,m

2
st) (we assume the sterile neutrino mass is much

larger than the active ones), and MW and MZ are the masses of W and Z
bosons respectively. U is the active-sterile vacuum mixing matrix constructed
through

U = R34R24R23R14R13R12. (5.125)

where Rij represent a rotation of angle θij in the ij plane. In what follows we
fix the oscillation parameters between the three active neutrinos ∆m2

21, ∆m2
31,

θ12 , θ13, and θ23 to the best fit for normal ordering from the global oscillation
analysis in NuFIT 3.0 [5, 6].

In Eq. (5.124) El = diag(εe, 0, 0, 0), Eν , and Es = diag(0, 0, 0, εs) are 4 × 4
matrices containing the energy density of the electrons, active neutrinos (which
is in general non-diagonal with non-zero entries in the upper 3×3 sector), and
sterile neutrinos respectively.

At this point it is more convenient to replace time, momentum and tem-
perature by the variables:

x ≡ ma, y ≡ pa, zγ ≡ Tγa, zν ≡ Tνa, (5.126)

where we take the arbitrary mass scale m to be 1 MeV. We stress that we have
added zν to trace the difference between neutrino and photon temperatures at
or after the time of e+e− annihilation. Also we normalize the scale factor to
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that a(t) = 1/Tν so that zν(x) is always 1. We can solve for zγ(x) from the
continuity equation (Eq. (5.15), see Eq. (15) in [184] for a detailed treatment).
The solution doesn’t depend on the details of the neutrino flavor evolution, so
this zγ(x) is precomputed as a known function before solving the QKEs. With
the new variables introduced above, we can rewrite Eq. (5.123) as

i
d%

dx
= +

x2

2m2yH̃

[
U †M2U, %

]
+

√
2GFm

2

x2H̃

[(
− 8ym2

3x2M2
W

Ẽl −
8ym2

3x2M2
Z

Ẽν
)
, %

]
+

√
2GXm

2

x2H̃

[
− 8ym2

3x2M2
X

Ẽs, %
]

+
xC[%]

mH̃
, (5.127)

where now %(x, y) is a function of x and y explicitly, and we define the nor-
malized Hubble parameter as

H̃ ≡ x2

m
H =

m

MPl

√
8πε̃(x, zγ(x), zν(x))

3
, (5.128)

where MPl is the Planck mass and the comoving total energy density is defined
as ε̃ ≡ ε(x/m)4 with ε as the total energy density. We are only interested in
the radiation dominant era after muon decay, thus to a good approximation
we can write the total energy density as

ε̃(x, zγ(x), zν(x)) = ε̃γ + ε̃e + ε̃ν , (5.129)

ε̃γ =
π2

15
z4
γ(x) , (5.130)

ε̃e =
2

π2

∫ ∞
0

dyy3fFD(y, zγ(x)), (5.131)

ε̃ν =
1

2π2

∫ ∞
0

dyy3Tr[%(x, y) + %̄(x, y)] . (5.132)

In what follows we assume the density matrix of antineutrinos is the same as
neutrinos. The Fermi-Dirac distribution function in Eq. 5.131 is defined in
Eq. (5.82) with the substitution gν → ge.

Eq. (5.122), though clear, is extremely computationally demanding due to
the momentum dependence of the density matrix, especially in the case of
three active plus one sterile neutrino species. To retain the main features of
the flavor evolution within a reasonable amount of computing time, we still
resort to the average momentum approximation as described in [182]. In this
approximation, we remove the momentum dependence in the equations by
assuming

%(x, y) −→ fFD(y)ρ(x). (5.133)
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Note that zν(x) is a constant so fFD is a function of y only. It is now straight-
forward to compute the momentum average of the variables by making use
of the relation 〈g(y)〉 =

∫∞
0
y2g(y)fFD(y)dy/

∫∞
0
y2fFD(y)dy (one can immedi-

ately verify 〈y〉 = 3.15 and 〈1/y〉 = 0.456). We can now write Eq. (5.127) in a
compact form as

i
dρ

dx
= +

x2

2m2H̃
〈1
y
〉
[
U †M2U, ρ

]
+

√
2GFm

2

x2H̃

[(
− 8〈y〉m2

3x2M2
W

Ẽl −
8〈y〉m2

3x2M2
Z

Ẽν
)
, ρ

]
+

√
2GXm

2

x2H̃

[
−8〈y〉m2

3x2M2
X

Ẽs, ρ
]

+
x〈C[ρ]〉
mH̃

, (5.134)

where in the potentials

Ẽl = diag(ε̃e, 0, 0, 0) , (5.135)

Ẽν =
2

2π2

∫ ∞
0

dyy3Gs%(x, y)Gs =
7

8

π2

15
Gsρ(x)Gs , (5.136)

Ẽs =
2

2π2

∫ ∞
0

dyy3GsX%(x, y)GsX =
7

8

π2

15
GsXρ(x)GsX . (5.137)

In terms of the average momentum approximation, the diagonal entries in
the density matrix denote the number density of active or sterile neutrinos
normalized to the neutrino density in the standard cosmology, i.e. neutrino
number densities follow standard Fermi-Dirac distribution with temperatures
determined from Eq. (5.72) after e+e− annihilation. In the above equations
Gs = diag(1, 1, 1, 0) and GsX = diag(0, 0, 0, 1) contain the dimensionless cou-
pling constants for active and sterile neutrinos, respectively. 〈C[%]〉 is the
momentum average of active and sterile collision terms expressed as [182, 185]

〈Cν [%]〉 = − i
2
G2
F

m5

x5
({S2, ρ− I} − 2S(ρ− I)S + {A2, ρ− I}+ 2A(ρ− I)A ,

〈Cs[%]〉 = − i
2
G2
X

m5

x5
({S2

X , ρ− I} − 2SX(ρ− I)SX) , (5.138)

where the active neutrino scattering and annihilation matrix S = diag(ges, g
µ
s , g

τ
s , 0)

and A = diag(gea, g
µ
a , g

τ
a , 0) with [185]

(ges)
2 = 3.06, (gea)

2 = 0.50 ,

(gµ,τs )2 = 2.22, (gµ,τa )2 = 0.28 .

For sterile neutrinos SX = diag(0, 0, 0, 1). We always work in the approxima-
tion Tν < MX so the annihilation terms are neglected . Note that when using
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the average momentum approximation we lose the details of the phase-space
distribution, so we always assume all neutrino species share the same temper-
ature when solving the QKEs. This assumption is robust since even if there
are small differences between the temperature of the different neutrino species,
the in-medium potential are only corrected by factors of O(1) and the solution
of the QKEs would be barely changed. We shall revisit this assumption later
when we compute Neff , where instead a small shift in neutrino temperature
can make a big difference.

Our aim is to explore as large parameter space as possible but solving
the QKEs is time demanding. So as a compromise, we allow the parameters
to vary within the range GX = 10−2GF ∼ 1010GF (from much smaller than
weak coupling to much larger than weak coupling), gX = 10−3 ∼ 10−1 (so we
treat the gauge boson mass MX as a parameter derived from GX and gX). As
the benchmark values for the mixings we take sin2 θ14 = 0.033 and sin2 θ24 =
0.012 which are the best fit of the 3+1 scheme obtained with short baseline
oscillation data [186]. We extend around those values by in the range sin2 θ14 =
0.0033 ∼ 0.33 but fixing sin2 θ14/ sin2 θ24 to 0.033/0.012. For simplicity we
assume sin θ34 = 0 (no mixing between tau neutrinos and sterile neutrinos).
We allow mst

2 = 0.01 eV2 ∼ 10 eV2 so that the allowed sterile neutrino mass
can be as low as the 95% CL of the cosmological bounds on neutrino masses,
and can be much larger than the mass suggested by short baseline anomalies.

As illustration of the output of the QKEs we show in Fig. 5.4 an example
of the neutrino flavor evolution with parameters such that the new interaction
is much stronger than electroweak interactions. As one would expect, sterile
neutrinos are produced only when the temperature is well below 1 MeV and all
four neutrino species get to similar (though not the exactly the same) number
densities after thermalization. For comparison we show in the right panel the
standard neutrino flavor evolution in the absence of new interactions. In this
case sterile neutrinos get immediately thermalized with the active neutrinos.
It clearly shows that the gauge boson interaction, when strong enough, is
capable of postponing the production of sterile neutrinos until after active
neutrino decoupling.

Now that we have the solutions of the QKEs, the next step is to obtain
Neff from the solutions. It is, however, not a straightforward task. Naively we
would expect Neff = ρee+ρµµ+ρττ +ρss where ρee, ρµµ, ρττ and ρss are the nor-
malized number density of four neutrino species. But this method fails when
neutrino thermalization takes place after active neutrino decoupling. This is
so because the total entropy and number in the neutrino sector is conserved
after decoupling, so the total normalized neutrino number density will always
be close to 3. But it does not mean Neff = 3 because the entropy initially
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Figure 5.4: The number density ραα of active and sterile neutrino species as a
function of the neutrino temperature. The left panel shows the flavor evolution
for GX = 1010GF , gX = 0.1, mst = 1 eV and sin θ14 = 0.1. The right panel
corresponds to standard 4ν evolution without any new interactions.

shared by the three active neutrino species is later shared by sterile neutri-
nos as well through thermalization, which leads to a reduction in the total
neutrino energy density. To obtain a reasonable Neff we make the following
assumptions:
1) Active neutrinos have decoupled completely from the plasma at 1 MeV.
At that time e+e− annihilation has not taken place yet, so in the standard
cosmology neutrinos still have the same temperature as the plasma at 1 MeV.
2) All neutrino species keep Fermi-Dirac distribution during flavor evolution
and their phase-space distribution is only characterized by their temperatures.

At this point it is important to differentiate the temperature of different
neutrino species since this is relevant for the determination of Neff . We argue
that neutrinos are able to maintain Fermi-Dirac shape as long as collision is
efficient enough to bring neutrinos to equilibrium. This happens when the new
interaction is strong enough to keep neutrinos self-coupled, and when the new
interaction is so weak that thermalization occurs before decoupling at which
time electroweak interaction is still efficient. For the interaction strength in
between, the behaviour of the physical system is expected to be continuous.
We find that keeping the Fermi-Dirac shape approximation leads to solutions
which interpolate well between the two limiting regimes of Neff . So we feel
confident that we are still capturing the main dependence of the results with
the model parameters.

Following the hypotheses above, we compute the temperatures of electron
neutrinos and other neutrino species as referred to the temperature of νe in
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standard cosmology. The evolution of temperature is determined by entropy
conservation after 1 MeV and Neff is calculated based on the neutrino temper-
atures. We can do this step by step. First we have

ρee,dec =
nνe,dec

n∗ν,dec

=

(
Tνe,dec

T ∗ν,dec

)3

, (5.139)

where where “dec” stands for the complete decoupling at 1 MeV and n∗ν and T ∗ν
are the neutrino number density (for one neutrino species) and temperature
in the standard 3ν mixing case. This is the definition of ρee which is the
number density of electron neutrinos normalized to that of a standard neutrino
species. Since we assume Fermi-Dirac distributions the number density nν ∝
T 3
ν . From this we can solve for the temperature of electron neutrinos as referred

to the standard active neutrinos at decoupling. After that it is straightforward
to calculate the temperatures of other neutrino species with respect to this
temperature by comparing their number densities, i.e.

ραα,dec

ρee,dec

=

(
Tνα,dec

Tνe,dec

)3

. (5.140)

After decoupling the total entropy in the neutrino sector is conserved. In the
presence of sterile neutrinos and new interactions, the entropy

S ∝
∑
α

T 3
να,deca

3
dec =

∑
α

T 3
να,tha

3
th , (5.141)

where “th” means some time later when the thermalization process stops, i.e.
the normalized number density doesn’t change anymore. Or in the standard
cosmology

T ∗ν,decadec = T ∗ν,thath . (5.142)

Considering Eq. (5.140) we can rewrite Eq. (5.141) as∑
α

ραα,dec

ρee,dec

T 3
νe,deca

3
dec =

∑
α

ραα,th

ρee,th
T 3
νe,tha

3
th . (5.143)

Eqs. (5.143) and (5.142) allow us to determine the electron neutrino temper-
ature in terms of standard neutrino species after thermalization. Again using
Eq. (5.140) we can infer the temperature of other neutrino species in terms of
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the temperature of electron neutrinos, i.e.

ραα,th
ρee,th

=

(
Tνα,th
Tνe,th

)3

. (5.144)

Once we have all the neutrino temperatures, we can calculate Neff after ther-
malization by comparing with the temperature of standard neutrino species
where

Neff =
∑
α

(
Tνα,th
T ∗ν,th

)4

. (5.145)

Finally when switching to mass eigenstates we estimate the neutrino num-
ber densities by nνi =

∑
α |Uαi|2nνα where as before i denotes mass eigenstates

and α denotes flavor eigenstates. We still assume Ferimi-Dirac distribution for
mass eigenstates.

We show in Fig. 5.5 Neff as a function of GX . For very small GX early
thermalization leads to Neff ' 4 and for very large GX late thermalization
leads to Neff ' 2.7. The range of GX where the transition from 4 to 2.7 takes
place depends on the choice of gX for fixed sterile neutrino mass and mixing.
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Figure 5.5: Neff as a function of effective coupling GX . The red, blue and black
curves correspond to gX =0.001, 0.01, 0.1, respectively. Other parameters are
fixed to mst = 1 eV and sin θ14 = 0.1.

Besides its effect on Neff , the new interactions can also possibly help to
avoid the cosmological constraints on the total neutrino mass. Sterile neu-
trinos may suppress the growth of matter perturbation because of their free-
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streaming till they become non-relativistic. However, if sterile neutrinos re-
main tightly coupled before non-relativistic transition, this constraint is not
valid anymore. We see from Fig. 5.3 that the ratio ΓX/H is still larger than 1
at 1 eV, which again justifies our choice of parameter range GX = 10−2GF ∼
1010GF .

5.3.4 Effects on Perturbations

Next we would like to see quantitatively how the new interactions can
affect the predictions of CMB and large scale structure (LSS) data. New
interactions add collision terms to the right of the Boltzmann equation (5.86)
and make it quite complicated. However, it has been shown in Ref. [187]
that an exact description of neutrino interactions is quantitatively equivalent
to the relaxation time approximation [188] where the collision term can be
approximated by [189, 190]

1

f0

∂f

∂τ
= −N

τν
, (5.146)

where τν = (nνs〈σv〉)−1 is the mean conformal time between collisions. Since
〈σv〉 ' G2

XT
2
νs , we have

τ−1
ν =

3

2

ζ(3)

π2
G2
XT

5
νs , (5.147)

where Tνs is obtained from the solution of QKEs. In terms of mass basis,
Eq. (5.86) can be written as

∂Ni
∂τ

+ i
q

ε
(k · n̂)Ni +

d ln f0

d ln q

[
Φ′i − i

ε

q
(k · n̂)Ψi

]
= −ΓijNj, . (5.148)

where i = 1, 4 denote the mass eigenstates and Γij is defined in mass basis as

Γij/τ
−1
ν = U diag(0, 0, 0, 1)U †

=


sin2 θ14

1

2
sin 2θ14 sin θ24 0

1

2
sin 2θ14 cos θ24

1

2
sin 2θ14 sin θ24 cos2 θ14 sin2 θ24 0

1

2
cos2 θ14 sin 2θ24

0 0 0 0
1

2
sin 2θ14 cos θ24

1

2
cos2 θ14 sin 2θ24 0 cos2 θ14 cos2 θ24

(5.149)
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It is straightforward to expand N as in Eq. (5.101) and obtain the new Boltz-
mann equation

N ′i,0 = −qk
ε
Ni,1 − Φ′

d ln fi,0
d ln q

, (5.150)

N ′i,1 =
qk

3ε
(Ni,0 − 2ψi,2)− εk

3q
Ψ
d ln fi,0
d ln q

, (5.151)

N ′i,l =
qk

(2l + 1)ε
[lψi,(l−1) − (l + 1)Ni,(l+1)]− ΓijNj,l , l ≥ 2 . (5.152)

As in Ref. [190] we have set the collision terms to zero in the equations of
monopole and dipole to ensure particle number and momentum conservation.
In case Γij > H, the quadrupole (related to the anisotropic σν) and higher
multipoles are suppressed. So contrary to our discussion of free-streaming
neutrinos in radiation era in the previous section, in the presence of the inter-
actions the power in higher multipoles are now transferred to the density and
velocity fluctuations which in turn contribute to the total gravitational source
and enhance the amplitude of the CMB fluctuations that entered the horizon
before recombination. This enhancement is clearly seen in Fig. 5.6, when we
compare the red line (GX = 107GF ) with the dashed red line (GX = 1010GF ).
To obtain these predictions we have solved the new collisional Boltzmann
equation in a modified version of the Boltzmann code CLASS [191] 1.

It is no surprise that the first peak of the red lines are all lower than that
of ΛCDM best fit. This is because for the interactions considered the result-
ing Neff is always smaller than 3 and Neff smaller than 3 tends to reduce the
energy density of radiation and bring ahead the matter-domination equality,
and hence reduce the amplitude of the peaks. The expansion history is also
changed because of this reduction. As we can see the peaks are shifted to
the left. In addition, notice that we have defined Neff when neutrinos are all
relativistic, so for CMB observables the contribution of the sterile neutrino is
further reduced a little because they become partially non-relativistic during
recombination. The solid blue line (GX = 10−2GF ), on the other hand, shows
the opposite behaviour since for these weak interactions the resulting Neff is
larger than 3. Indeed, as a cross check, we have verified explicitly that the
blue line can exactly mimic the behavior of a sterile species without interac-
tions. The new interaction in this case is too weak to be significant in the
thermalization of sterile neutrinos.

To examine the effects of new interactions on the growth of large scale

1Note that Eqs. (5.150)-(5.152) are written in Newtonian gauge. It is transformed into
Synchronous gauge in the code (see Ref. [163] for a detailed description of gauges and gauge
transformations in cosmology).
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Figure 5.6: CMB temperature power spectrum. The predicted spectrum in
ΛCDM for the best fit of Planck TT+lowP [4] (ωb = 0.0222, ωcdm = 0.1197,
100θMC = 1.0485, τreio = 0.078, ln 1010As = 3.089, and ns = 0.9655) is shown
in black along with error bars from Planck 2015 data. Colored lines correspond
to ΛCDM models with one sterile neutrino species and new interactions. Cos-
mological parameters are the same as the best fit of Planck TT+lowP and the
implicit parameters for new interactions are the same as Fig. 5.4 (gX = 0.1,
mst = 1 eV, and sin θ14 = 0.1). The solid blue, solid red and dashed red lines
show different interaction strength corresponding to GX = 10−2GF (Neff = 4),
GX = 107GF (Neff = 2.7), GX = 1010GF (Neff = 2.7), respectively.

structures we also show the corresponding matter power spectrum in Fig. 5.7.
As discussed, a O(eV) sterile neutrino will greatly suppress the matter power
spectrum at small scales, as we can see from the blue curve. However, adding
the new νs interactions is able to make neutrinos less free streaming and bring
the red curves close to ΛCDM best fit.

5.4 Confronting with Cosmological Data

In the previous section we have solved the QKEs to study the flavor tran-
sitions in the early universe. It provides a powerful tool to explore the role
of sterile neutrinos in the expansion history of the universe in the presence
of new sterile neutrinos with additional interactions. Furthermore to quantify
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Figure 5.7: Matter power spectrum as a function of k. The models and pa-
rameters are the same as Fig. 5.6.

the effects of the sterile interactions in the evolution of the perturbations we
have modified the neutrino Boltzmann equation in Sec. 5.3.4 and show the
corresponding CMB and matter power spectrum.

Now we are going to confront these modifications with data. First in
Sec. 5.4.1 we show the constraints on sterile neutrino mass and new interac-
tion strength from their effects on BBN. After that we confront the new νs
interaction model with CMB and LSS measurements and present the results
in Sec. 5.4.2.

5.4.1 Constraints from Big Bang Nucleosynthesis

We have seen from Eq. (5.79) that both Neff and the number density of
electron neutrinos can affect the abundances of BBN nuclei. In terms of our
solution of QKEs, the normalized electron neutrino number density n̄νe = ρee.
The effect of νe number density can be incorporated to a redefinition of g∗ and
∆Neff , say √

g∗

(1 + n̄νe)/2
=

√
g′∗

(1 + 1)/2
, (5.153)

where g′∗ ≡ 10.75 + ∆N ′eff , i.e. we start with a standard neutrino number
density, but modify ∆Neff to get the correct neutron freezing-out temperature.
It is straightforward to see the modified ∆Neff to be

∆N ′eff =
4

7

[
43 + 7∆Neff

(1 + n̄νe)
2
− 10.75

]
. (5.154)
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This treatment is similar to that of Dolgov et al. [192]. Since Neff and n̄νe
are rather insensitive to the small change in Tf , while the neutron-to-proton
depends on Tf exponentially, we use the Neff and n̄νe at 1 MeV to determine
the ratio nn/np. The most abundant nuclei heavier than hydrogen are 4He
and deuterium. Their abundances have been determined by observations to
bew[193]

YP ≡ 4
nHe

nb
= 0.2465± 0.0097 , (5.155)

and [194]

yDP ≡ 105nD

nH

= 2.53± 0.04 , (5.156)

where nb, nHe, nD, nH are the number density of baryons and helium, deuterium
and hydrogen nuclei respectively. To confront the predictions in the presence
of new νs interactions with Big Bang Nucleosynthesis (BBN) data, we use the
helium and deuterium abundances given by Taylor expansions obtained with
the PArthENoPE code [195], i.e.

YP = 0.2311 + 0.9502ωb − 11.27ω2
b

+ ∆N ′eff(0.01356 + 0.008581ωb − 0.1810ω2
b )

+ ∆N ′2eff(−0.0009795− 0.001370ωb + 0.01746ω2
b ) , (5.157)

yDP = 18.754− 1534.4ωb + 48656ω2
b − 552670ω3

b

+ ∆N ′eff(2.4914− 208.11ωb + 6760.9ω2
b − 78007ω3

b )

+ ∆N ′2eff(0.012907− 1.3653ωb + 37.388ω2
b − 267.78ω3

b ) , (5.158)

where ωb is the energy density of baryons today defined as ωb ≡ Ωbh
2 and

h ≡ H0/(100kms−1Mpc−1). The treatment is similar to that of Planck Col-
laboration [4]. The theoretical predictions are subject to errors from neu-
tron lifetime and the interaction rate of d(p,γ)3He. They are predicted to
be σth(YP) = 0.0003 and σth(yDP) = 0.06. Since theoretical errors are not
correlated with the errors from observations, we can add them in quadrature.

We perform a Bayesian inference with MultiNest [53–55]. The likelihood
function is constructed by

− 2 lnL(ω) =
(YP(ω)− Y dat

P )2

(σdat
YP

)2 + (σth
YP

)2
+

(YP(ω)− ydat
DP)2

(σdat
yDP

)2 + (σth
yDP

)2
, (5.159)

where the parameters ω = (GX , gX , ωb,mst, θ14). We assume flat priors on
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these parameters within the range

−2 ≤ log10(GX/GF ) ≤ 10 , 0.001 ≤ gX ≤ 0.1 ,
0.93 eV ≤ mst ≤ 1.43 eV , 0.012 ≤ sin2 θ14 ≤ 0.05 ,
0.02153 ≤ ωb ≤ 0.02291 ,

(5.160)

where the prior on ωb is the 3σ range as obtained from [4] and the 3σ ranges
of mst and sin2 θ14 come from the fit of short baseline anomalies [196]. The
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Figure 5.8: Posteriors of log10(GX/GF ) and gX . The yellow, blue and dark
blue regions correspond to the 2σ, 3σ and 4σ allowed ranges, respectively.

posteriors of GX and gX are shown in Fig. 5.8. As expected very small GX

is disfavored since it yields Neff close to 4. The posterior distribution of gX is
almost flat meaning this parameter is very mildly constrained by BBN data.
Indeed, the marginalized posteriors of the parameters are gX ≤ 0.064 (1σ) and
log10(GX/GF ) ≥ 5.9 (1σ) and log10(GX/GF ) ≥ 3.8 (2σ). All values of gX is
allowed in the 2σ range.

5.4.2 Global Analysis of Cosmological Data

We perform a Bayesian analysis of the CMB and LLS data to test the new
interaction model by interfacing CLASS with the Markov Chain Monte Carlo
(MCMC) code Monte Python [197]. The cosmological parameters are the same
as the base ΛCDM model in Ref. [4], i.e. the baryon energy density ωb, the cold
dark matter density ωcdm ≡ Ωcdmh

2, the size of sound horizon at recombination
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100θMC, the optical depth to reionisation τreio and the amplitude and tilt of
the initial power spectrum ln(1010As) and ns respectively. All cosmological
parameters have flat priors without upper nor lower limits except τreio ≥ 0.04.
Besides the six cosmological parameters, we have four more parameters to
describe the new scenario: log10(GX/GF ), gX , mst and sin2 θ14. Their prior
ranges for them can be found in Table 5.1.

Prior log10(GX/GF ) gX mst(eV) sin2 θ14

Broad [−2, 10] [0.001, 0.064] [0.1, 3] [0.0033 , 0.33]

Narrow [−2, 10] [0.001, 0.064] 1.27± 0.03 0.028± 0.006

Table 5.1: Prior ranges for “broad prior” and “narrow prior”. All the parame-
ters are flat except mst and sin2 θ14 for narrow prior which are instead gausian
with the center and width listed above.

Note that the prior of the parameter gX is flat in the limited range [0.001, 0.064].
It is motivated by the 1σ range of BBN constraint discussed in the previous
section. The upper limit is put to avoid an over large parameter space for the
nearly unconstrained parameter or otherwise the MCMC chains would not be
converged. gX only enters the Boltzmann code through Neff , where it degen-
erates with other three new interaction parameters. As we can see from the
analysis of BBN data, simply fitting Neff can not put tight constraints on gX .
So we argue our limit on gX is consistent with BBN data but without loss of
generality. We impose two different kind of priors on mst and sin2 θ14. One
is flat in the range 0.1 eV ≤ mst ≤ 3 eV and 0.0033 ≤ sin2 θ14 ≤ 0.33, which
we denote as “broad prior” . They are as large as the range where we have
solved the QKEs. The other one is gaussian with mst = 1.27 ± 0.03 eV and
sin2 θ14 = 0.028 ± 0.006. They are motivated by the best fit and width as
obtained from the analysis of short baseline anomalies [196]. We denote it as
“narrow prior”. Technically, the narrow prior is imposed by adding a gaussian
likelihood to the data likelihood. To interface the QKEs with the modified
CLASS code for the neutrino Boltzmann equations, we first solve the QKEs in
the parameter ranges listed above and then interpolate the solutions to obtain
Neff and neutrino temperatures to be input in CLASS. The resulting priors of
Neff corresponding to the two priors for the relevant parameters is illustrated
in Fig. 5.9. As Neff mainly depends on the effective coupling GX , if GX � GF ,
Neff ' 2.7; on the other hand, if GX � GF , Neff ' 4. Therefore the resultant
Neff of both broad and narrow priors are peaked at these two extremes and it
differs from those extreme values in a very small range of the input parameter
space. In the figure we also include a modified prior which is nearly flat in Neff

that we will describe at the end of this section.
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Figure 5.9: Resulting priors on Neff for broad prior (red line) and narrow prior
(blue line). For comparison we also cut the parameter space of MX to force a
nearly flat prior on Neff . See text for details.

For CMB we use the Planck 2015 [198] high multipole temperature corre-
lation data as well as the low multipole polarization data (denoted as “Planck
TT+lowP” in the Planck papers, and we use “TT” here for short). For the
LSS data we include the measurements of the scale of the Baryon Acoustic
Oscillation peak (BAO) at different red shifts as measured in the 6dF Galaxy
Survey [199], the SDSS DR7 main Galaxy samples [200], the CMASS [201]
and LOWZ [202] samples from SDSS DR11 results of BOSS experiment. The
full information of the matter power spectrum is helpful in understanding the
role of new interactions in structure formation, though, we do not use this
data since it is subject to galaxy bias and other non-linear effects which are
not well modeled within our assumptions.

We have summarized our results in Table 5.2 and Fig. 5.10 where we give
the allowed ranges of the 6+4 parameters in the analysis and the posterior
probability distribution for the four new parameters respectively. As expected
there is nearly no constraint on gX and sin2 θ14. The 95% CL limit on mst for
broad prior and TT data is mst < 0.91 eV. It can be compared with the 95%
limit of mst < 0.82 eV in terms of the SΛCDM model in Ref. [190]. There is
no wonder that our limit is a little relaxed since we work in a larger range of
GX . But it shows that even with new interactions a sterile mass larger than
1 eV is still excluded by more than 2σ. Adding BAO data puts even tighter
constraint on mst and we find mst < 0.37 eV at 95% CL.

We also notice that the interacting νs scenario with large GX (GX >
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Broad Prior Narrow Prior

Parameter TT TT+BAO TT TT+BAO

ωb 0.02192+0.00021
−0.00033 0.02248± 0.00033 0.02192+0.00023

−0.00031 0.02301+0.00037
−0.00043

ωcdm 0.1179+0.0019
−0.0036 0.1190+0.0047

−0.0081 0.1172+0.0021
−0.0036 0.1145± 0.0061

100θMC 1.04218+0.00065
−0.00046 1.04189+0.0010

−0.00080 1.04226± 0.00061 1.04218+0.00083
−0.00074

ln 1010As 3.077+0.032
−0.045 3.125+0.045

−0.052 3.078+0.035
−0.045 3.184± 0.056

ns 0.9509+0.0067
−0.013 0.977+0.010

−0.019 0.9388+0.0079
−0.013 0.985± 0.021

τreio 0.075+0.016
−0.021 0.097± 0.021 0.076+0.017

−0.021 0.130± 0.024

log10(GX/GF ) [0.41, 8.37] [−1.36, 7.56] > 1.42 [−1.90, 2.31]

gX - - - < 0.054

mst/eV < 0.91 < 0.37 1.27± 0.03 1.26± 0.03

sin2 θ14 - - 0.028± 0.006 0.027± 0.006

H0 63.3+1.5
−2.3 68.5+1.6

−3.1 60.26+0.81
−1.8 67.6± 2.5

Table 5.2: Allowed ranges for the model parameters for different priors and
data sets. Cosmological parameters are shown in mean±1σ and the parame-
ters for new interactions are shown in 95% CL except for mst and sin2 θ14 in
narrow priors. We also show the corresponding derived ranges for H0 in unit
of kms−1Mpc−1.

104GF ) is preferred over the non-interacting scenario when considering TT
data only. This is expected since small GX tends to produce Neff ' 4 which
is too far away from the favoured value of 3 to be reconciled with the shift
of other cosmological parameters. What is surprising is that by adding BAO
data, the favouring of large GX drops significantly while that of small GX is
lifted considerably. Indeed in the case of narrow prior, the non-interacting
scenario is even more favored than the strongly interacting case. This change
is also reflected in the posterior of Neff . Remember that the priors of Neff are
peaked both at 2.7 and 4 (see Fig. 5.9) but the peak of around 4 is lower.
However, as seen in Fig. 5.10, the inclusion of BAO information to the TT
data raises the peak of around Neff = 4 and for the case of the narrow prior it
totally disfavours Neff = 2.7.

To better understand this behavour we plot the predicted values of the
BAO observable as a function of redshift z = a0/a − 1 in Fig. 5.11. The
plotted function DV (z) is defined as the combination of the angular diameter
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distance DA(z) and Hubble parameter H(z), i.e.

DV (z) =

[
(1 + z)2D2

A(z)
cz

H(z)

]1/3

, (5.161)

where the angular diameter distance is defined, for an astrophysical object
with physical size d and angular size θ as

DA =
d

θ
. (5.162)

rs is the comoving sound horizon at the end of the baryon drag epoch (roughly
the time when baryons decoupled from photons). The ratio is quite robust and
unaffected by uncertainties in the modeling of non-linear structure formation
and other systematics. It is clear that both DV and rs are affected by the
expansion history of the universe and hence depend on H0. Let us stress that
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Figure 5.11: DV /rs as a function of redshift z. BAO data and error bars are
shown in black. The parameters for the solid black (ΛCDM) are the same as
Fig. 5.6 so for this curve H0 = 67.31. The colored lines correspond to the in-
teracting νs scenario with gX = 0.1, mst = 1 eV, andsin θ14 = 0.1 and different
values of GX as labeled in the figure. For these curves the other cosmologi-
cal parameters have been fixed to the ΛCDM best fit except the size of the
sound horizon at recombination 100θMC which has been adjusted to produce
the corresponding values of H0 given in the label (in units of kms−1Mpc−1).

in our analysis so far we have used as input parameters the ten parameters
described above, so given a set of values for the ten parameters, H0 is a derived
quantity. For example for the parameters at the best fit of ΛCDM the Hubble
constant comes out to be H0 = 67.31 kms−1Mpc−1. In here, however, to better
control the dependence on H0 we have traded one of the input parameters
(which we chose to be the sound horizon at recombination 100θMC) by H0.
And as we can see from Fig. 5.11 for the strong interacting scenario BAO
data favour H0 in between 65 kms−1Mpc−1 and 70 kms−1Mpc−1. Indeed
we see that the prediction for a strongly interacting νs but with H0 as low as
60 kms−1Mpc−1 is even worse than the case of non-interacting sterile neutrinos
with H0 = 67.31 kms−1Mpc−1.

However, a small H0 is preferred by TT data, as we can see from Table 5.2
and Fig. 5.10. For example when using the broad (narrow) prior we find that
TT data prefers H0 = 63.3+1.5

−2.3 kms−1Mpc−1 (H0 = 60.26+0.81
−1.8 kms−1Mpc−1)

Indeed there exists a strong correlation between H0 and Neff which we have
shown in Fig. 5.12 where we plot the two-dimensional posterior allowed regions
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Planck+BAO data.

for those parameters from the analysis with narrow prior (the corresponding
ones for the broad prior are not very different). As discussed, the change in
Neff leaves an imprint on the sound horizon at recombination, which has to be
compensated by the shift in H0. This explains the small H0 favored by TT.
However this small H0 raises a tension with the BAO data. So when adding
BAO to the analysis, a small GX which predicts large Neff and large H0 can
give a better overall description.

Quality of Fit

So far we have discussed the posteriors of cosmological and new interac-
tion parameters. However, we have somehow left aside one important question:
How much can we “gain” by adding new interactions to reconcile eV sterile
neutrinos in cosmology? We can get an estimate of it by looking at the min-
imum χ2 for the different analysis which we have summarized in Table 5.3.
From the table we read that the best fit for the interacting νs model with
the broad priors is always comparable to the ΛCDM best fit, and much bet-
ter than the case without new interactions. This is because within the broad
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Data ΛCDM Free-νs BP Free-νs NP Int-νs BP Int-νs NP

TT 11262 11271 11282v 11264 11271

TT+BA O 11266 11274 11304 11267 11299

Table 5.3: χ2
min for various models and data combinations. “Free-νs BP” and

“Free-νs NP” are models of ΛCDM with one non-interacting sterile neutrino
species with mst and θ14 priors as in Table 5.1 but with a fixed and very weak
interaction (GX = 10−2GF so effectively for this model Neff = 4).

prior there always exists an interaction strength which predicts Neff ' 3 and
a reasonable fit can be obtained at the lower limit of the allowed range of mst.

For the interacting νs model with narrow priors we find that, as for cos-
mological data respects, ΛCDM is a better fit by ∆χ2

min = 9.41 when using
TT data, but still, it provides a much much better description than the non-
interacting case. However, as read from the table, including BAO data (which
are 4 data points) increases the χ2 of both interacting and non-interacting
scenarios with the narrow prior by ∼ 25 units. Therefore we conclude that
new interactions have limited power to reconcile the sterile neutrinos required
by the short baseline anomalies when the information from LSS is included.

Dependence on Neff Prior

One another thing to keep in mind is that for the priors used in our previous
analysis for the model parameters the derived Neff prior is not flat but peaked
at 2.7 and 4 as shown in Fig. 5.9 and while TT favours models close to the 2.7
peak, BAO disfavours them severely to the point of favouring models close to
the 4 peak.

One may wonder then if for models leading to Neff in the intermediate
region one could find some some compromise. This possibility however is not
observed in the posterior distribution of those analysis as a result of the “vol-
ume effect” of the priors which suppresses this possibility. It is important to
stress however that the conclusion about the bad quality of the overall descrip-
tion of the TT+BAO data when using the narrow prior holds independently
of this prior bias because it is based on the value of the minimum χ2 of the
analysis which is independent of the shape of prior probability distributions.

Still, to quantify the effect of this bias induced by the prior in the derived
posterior for the broad prior analysis, we have searched for an add-hoc prior for
the four model parameters which resulted into a derived prior for Neff which
was as flat as possible. We found that for this it was best to use MX and gX
as base parameters instead of GX and gX . With a flat prior on log10MX for
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MX between 70 MeV and 1200 MeV and gX still flat between 0.001 and 0.064
(so the derived range of −2 ≤ log10(GX/GF ) ≤ 4.1) and with broad or narrow
prior ranges for mst and θ14, the derived Neff prior obtained is that shown in
the corresponding curve in Fig. 5.9, which, as seen in the figure, is relatively
flat between 2.7 and 4.

The resulting posterior for mst and Neff for the analysis with this add-hoc
broad prior are shown in Fig. 5.13. The first thing we notice is that with the

0.5 1 1.5

m
st

2.8 3 3.2 3.4 3.6 3.8

N
eff

TT
TT+BAO

Figure 5.13: Posterior distribution of mst and Neff assuming the add-hoc Neff

prior and for the data combinations as labeled in the figure

ad-hoc prior we do not observe the appearance of the peak in the posterior
around Neff = 4 when including BAO data. We find instead that even when
considering TT+BAO data Neff < 3.54 and mst < 0.40 eV at 95% CL. In
what respects to the interaction parameters for the add-hoc prior we find that
the full range of gX is allowed at this CL while 70 ≤ MX ≤ 931 MeV when
using TT data only (which implies 0.45 ≤ log10(GX/GF ) ≤ 3.88) while the
full range of 70 ≤ MX ≤ 1200 MeV and −0.64 ≤ log10(GX/GF ) ≤ 3.36 is
allowed in the TT+BAO analysis.

We finish by commenting that when using this ad-hoc quasi-flat Neff prior
we can cross-check the results of our analysis with the corresponding anal-
ysis performed by the Planck collaboration in terms of an “effective” sterile
neutrino mass with free Neff [4]. We find that our results are consistent
with those obtained by Planck collaboration in their analysis (which includes
TT+lensing+BAO data) Neff < 3.7 and meff

ν,sterile < 0.38 eV.
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5.5 Summary

In this chapter we have made use of the physics of cosmological neutrinos to
probe beyond the Standard Model scenarios in the neutrino sector. Our main
motivation has been to test the explanations invoked to accommodate some
anomalies observed in oscillation experiments at short baselines which indi-
cate the possible existence of an additional sterile neutrino with non-negligible
mixing with the three standard ones.

We started by briefly reviewing the role of neutrinos in cosmology. Their
energy density and pressure affect the expansion history of universe and their
free-streaming suppresses the structure formation at small scales. This leaves
imprints on the CMB, BBN and LSS data which can be used to constrain the
neutrino properties. As a consequence, the current cosmological data leads
to bounds on the sum of neutrino masses and on the number of neutrino-like
degrees of freedom Neff which contradict the existence of sterile neutrinos of
mass ∼eV as favored by the short baseline oscillation data. In this chapter
we have aimed at exploring how a new self-interaction with some coupling gX
among such massive sterile neutrinos mediated by a a gauge boson of some
mass MX can (or cannot) improve the description of cosmological data.

We show that if the in-medium potential induced by the new interaction is
much larger than the neutrino vacuum oscillation frequency in the early uni-
verse the production of sterile neutrinos can be postponed until after neutrino
decoupling. This can lead to Neff ' 2.7. On the other hand, if the effective
interaction strength GX/

√
2 = g2

X/(8M
2
X) is much smaller than that of elec-

troweak interaction, the universe still ends up with Neff ' 4. A comparison
between the new interaction model and BBN data shows that the effective
coupling strength must verify log10(GX/GF ) ≥ 3.8 at 95% CL to correctly
describe BBN.

We have also performed a Bayesian analysis of the self-interacting sterile
neutrino model with Planck and BAO measurements and study the depen-
dence on the prior ranges allowed for the model parameters. By allowing a
wide prior of sterile neutrino mass, we find mst ≤ 0.91 eV (95% CL) consid-
ering Planck data only and mst ≤ 0.37 eV (95% CL) using a combination of
Planck and BAO data. So the mass bounds are relaxed compared with that
of a non-interacting sterile neutrino but a sterile neutrino mass of 1 eV is still
excluded by more than 2σ CL. We also perform an analysis by fixing the sterile
neutrino mass and mixing to the values preferred by short baseline data. Both
analysis show that Planck data alone favors relatively large GX , i.e. the new
interaction scenario, while including BAO information significantly increases
the probability of models with small GX , i.e the non-interacting scenarios. We
have shown how this can be explained by the known degeneracy between H0
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and Neff—the small Neff (Neff ' 2.7) leads to small H0, which is in contradic-
tion with the BAO data.

We conclude then that adding the new interaction can alleviate the tension
between eV sterile neutrinos and Planck data, but when including also the
BAO data this interacting model leads to a much worse fit than the pure
ΛCDM model without sterile neutrinos.
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Chapter 6

Conclusions

In this thesis we have studied neutrinos from three different extraterrestrial
sources: neutrinos from the Sun, ultra high energy neutrinos from astrophys-
ical objects and relic neutrinos from the big bang. These neutrinos serve as
powerful tools when studying their sources and interactions. Here we present
a brief summary of our main conclusions.

• Solar neutrinos. In Chapters 2 and 3 we have addressed two main
questions: what do we know about the solar neutrino fluxes indepen-
dently of the solar models and how this knowledge together with the
results of helioseismic observations can be used not only to test the pre-
dictions of solar models but to actually improve on the modeling. In
particular in Chapter 2 we have shown how using Bayesian statistics
techniques applied to the latest data from both solar and non-solar neu-
trino experiments, we can determinate the solar neutrino fluxes without
invoking any solar model. We have compared the results obtained with
and without imposing that nuclear physics is the only source of energy
generation. This study has allowed to reduce our uncertainty in the 7Be
and pp (and correspondingly pep) fluxes by a factor 2, and by 30% in
the 8B flux compared to previous analysis. Furthermore the uncertainty
on the total luminosity due to nuclear physics as derived from neutrino
data has been reduced by a factor two and is now, for the first time,
below 10%. Also when comparing with the predictions of standard solar
models, we have shown that our bounds on CNO neutrino fluxes are very
close to the theoretical 3σ range.

Turning to the issue of the solar modeling the main motivation for our
work has been the so-called solar abundance problem which has led to
the existence of two sets of models differing on the set of input abun-
dances (with either lower metallicity or higher metallicity) used in their
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construction with the one used the most updated abundances yielding
the worse description of the helioseismic data. As both variants yield dif-
ferent neutrino fluxes we first checked if our determined neutrino fluxes
could discriminate between the two. Our statistical comparison showed,
however, that with our present flux precision, both variants lead to com-
parable description of the data. We have found that a future CNO flux
measurement with σCNO = 5% uncertainty would be needed to yield a
moderate evidence in favor of one of the two sets.

In Chapter 3 we have presented our contribution to possible improve-
ments on the solar modeling which can lead to a better description of
both neutrino and helioseismic results. In this study we have used the
latest generation of solar models: B16-GS98 (low metalicity variant) and
B16-AGSS09met (high metalicity variant) with include updates on sev-
eral model inputs: some nuclear reaction rates, the treatment of the
equation of state and of the opacity uncertainties. We have performed
detailed comparisons of the high and low metallicity variants against dif-
ferent ensembles of solar observables including solar neutrinos, surface
helium abundance, depth of convective envelope and sound speed pro-
file. We have obtained that the global analysis including all observables
yields a p-value of 2.7σ for the B16-GS98 model and 4.7σ for the B16-
AGSS09met, with the main culprit being the inability of the models to
describe the sound speed data.

We first studied how much the agreement could be improved with a
more flexible modeling of the radiative opacity profile possible with the
introduction of a Gaussian Process approach. Our results show that this
more flexible modeling makes the preference of B16-GS98 model over
B16-AGSS09 model less marked.

Next we turned to an alternative approach to the abundance problem
and have developed the methodology to “build” an alternative set of
Standard Solar Models which are able to describe the helioseismic and
neutrino data. This is, we have shown how to turn the outputs of the
model calculations into inputs. We had done so by using Bayesian infer-
ence techniques. Starting from a composition unbiased set of SSMs we
have reconstructed the solar opacity profile and other inputs in a data
driven way. In this way we have estimated the total opacity uncertainty
(data + priors) to be 7.5% at the base of the convective envelope and
1.8% at the solar core. We have also determined the chemical compo-
sition and other solar inputs which better describe the helioseismic and
neutrino observations. As an output of the study we derive the corre-
sponding data driven predictions for the solar neutrino fluxes.
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• Astrophysical neutrinos. The measurement of the flavor composition
of the detected ultra-high energy neutrinos can be a powerful tool to
learn about the mechanisms at work in their sources. Such inference,
however, relies on the understanding of the particle physics processes
relevant to the neutrino propagation from the source to the detector.
The presence of new physics effects beyond those of the well established
mass-induced 3ν oscillations alters the flavor composition at the detector
and can therefore affect the conclusions on the dominant production
mechanism.

In Chapter 4 we have focused on new physscs effects associated with
non-standard interactions of the neutrinos in the Earth matter. The
relevant flavor transition probabilities accounting for oscillations from
the source to the Earth plus the non-standard interactions in the Earth
are energy independent but depend on the zenith angle of the arrival
direction of the neutrinos, which is a characteristic feature of this form
of new physics. Quantitatively, we have shown that, within the presently
allowed range of non-standard interactions, large deviations from the
standard 3ν oscillation predictions for the detected flavor composition
can be expected, in particular for fluxes dominated by one flavor at the
source. On the contrary we find that the expectation of equalized flavors
in the Earth for sources dominated by production via pion-muon decay-
chain is robust even in the presence of this form of new physics. Our
results are based on coherent forward scattering but show robustness
when including incoherent effects.

• Cosmological neutrinos. Cosmological neutrinos are the relics of the big
bang. Their energy density and pressure affect the expansion history of
universe and their free-streaming suppresses the structure formation at
small scales. All this leaves imprints on the CMB, BBN and large scale
structure data. In Chapter 5 we have studied how to apply this data to
learn about extended scenarios with additional light (O(eV ) mass) sterile
neutrinos invoked to explain some anomalies observed in the oscillation
data at short baseline and how the inclusion of self-interactions among
these light sterile neutrinos affect the results. The foundation of the
study is the well-known result that the current cosmological data leads to
bounds on the sum of neutrino masses and on the number of neutrino-like
degrees of freedom Neff which contradict the existence of sterile neutrinos
of mass ∼eV as required by the short baseline oscillation data.

In Chapter 5 we have shown that including new interactions of coupling
gX among such massive sterile neutrinos mediated by a a gauge boson
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of some mass MX � T can induce an in-medium potential. If this
potential is much larger than the neutrino vacuum oscillation frequency
in the early universe the production of sterile neutrinos can be postponed
until after neutrino decoupling. This leads to a reduction Neff ' 2.7. On
the other hand, if the effective interaction strength GX/

√
2 = g2

X/(8M
2
X)

is much smaller than that of electroweak interaction, the universe still
ends up with Neff ' 4. We have performed an analysis of the BBN data
to show that interactions with log10(GX/GF ) ≥ 3.8 and any value of gX
can describe the BBN results with 95% CL.

We have also confronted the predictions of the self-interacting sterile neu-
trino scenario with the CMB and large scale structure data by performing
a Bayesian analysis including Planck and BAO measurements. By allow-
ing a wide prior for the sterile neutrino mass, we found mst ≤ 0.91 eV
(95% CL) considering Planck data only and mst ≤ 0.37 eV (95% CL)
using a combination of Planck and BAO data. So the mass bounds are
relaxed compared with the non-interacting sterile neutrino scenario but
we still found that a sterile neutrino mass of more than 1 eV was excluded
at more than 2σ CL. We have also performed the same analysis but forc-
ing the sterile neutrino mass and mixing to the values preferred by short
baseline data. Both analysis show that Planck data alone favors rela-
tively large GX , i.e. the new interaction scenario, while including BAO
information significantly increases the probability of models with small
GX , i.e the non-interacting scenario. We have shown how this can be ex-
plained by degeneracy between H0 and Neff—the small Neff (Neff ' 2.7)
leads to small H0, which is in contradiction to the BAO data. As a
consequence we have shown that the minimum χ2 for any of the sterile
neutrino scenarios with or without self-interactions grows by about 25
units when included the 4 BAO data points in the fit.

In conclusion, we have shown that the inclusion of the new self-interactions
among the sterile neutrinos has limited power to reconcile the sterile
neutrinos required by the short baseline anomalies with the cosmologi-
cal observations in particular when the information from the large scale
structure is included.
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